• 11111
  • 首页
  • 期刊介绍
  • 编委会
  • 征稿启事
  • 期刊订阅
  • 相关下载
  • Email alert
  • 联系我们
引用本文:李北星,王威,陈梦义,叶茂.粗骨料的等轴率、圆度和球度及其相互关系[J].建筑材料学报,2015,18(4):531-536
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1303次   下载 0 本文二维码信息
码上扫一扫!
分享到: 微信 更多
粗骨料的等轴率、圆度和球度及其相互关系
李北星, 王威, 陈梦义, 叶茂
武汉理工大学硅酸盐建筑材料国家重点实验室,湖北武汉430070
摘要:
运用图像分析软件(IPP软件)测定了石灰石和铁尾矿废石粗骨料的三轴特征、圆度和球度,采用统计产品与服务解决方案软件(SPSS软件)对不同粒级石灰石和铁尾矿废石粗骨料的等轴率、圆度和球度进行了统计分析,并建立了三者之间的相互关系.结果表明:不同粒级石灰石和铁尾矿废石粗骨料的等轴率、圆度、球度分布均近似符合正态分布;等轴率、圆度、球度这3个指标用于评价不同品种、不同粒级粗骨料的粒形特征具有良好的一致性;粗骨料球度与等轴率、圆度之间能够建立显著性极高的二元线性回归方程.
关键词:  粗骨料  颗粒形状分析  数字图像处理  线性回归
DOI:10.3969/j.issn.1007 9629.2015.04.001
分类号:
基金项目:国家自然科学基金资助项目(51372185);国家高技术研究发展计划(863计划)项目(2012AA062405)
Isometric Ratio, Roundness and Sphericity of Coarse Aggregates and Their Relationship
LI Beixing, WANG Wei, CHEN Mengyi, YE Mao
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
Abstract:
The tri axial characteristic, roundness and sphericity of limestone and waste iron tailing rock coarse aggregates were determined by Image Pro Plus(IPP) software. The statistical analyses on the isometric ratio, roundness and sphericity of limestone and waste iron tailing rock coarse aggregates with different particle sizes were done by Statistical Product and Service Solutions(SPSS) software, and the relationships among the three parameters were established. The results indicate that the isometric ratio, roundness and sphericity of limestone and waste iron tailing rock coarse aggregates with different particle sizes are all in accordance with the normal distribution approximately, and the three parameters have good consistency in characterizing the particle shapes of different type or different sized coarse aggregates. Furthermore, the relationship among the sphericity and isometric ratio and roundness of coarse aggregate fits in a highly significant binary linear regression equation.
Key words:  coarse aggregate  particle shape analysis  digital image process  linear regression