文章编号:1007-9629(2024)02-0161-07

RSM优化焚烧底灰胶凝材料及安全性评价

刘心中*, 郇冬冬, 丘琛辉, 张梦成, 杨 康

(福建理工大学生态环境与城市建设学院,福建福州 350118)

摘要:为了将生活垃圾焚烧底灰(MSWI-BA)进行资源化利用,基于响应面中心复合试验法 (RSM-CCD)研究了不同活性激发方式对经过预处理的MSWI-BA水泥胶砂试块28d抗压强度的 影响.结果表明:活性激发MSWI-BA胶凝材料具有较好的胶凝活性;采用RSM-CCD得到,掺 10%MSWI-BA水泥胶砂试块在最佳试验条件下的28d抗压强度计算值为46.04 MPa,实测值为 46.15 MPa,二者符合较好,为MSWI-BA的资源化利用提供了一种解决方法;MSWI-BA胶凝材料 的安全性较好,重金属浸出性能满足GB 30760—2014《水泥窑协同处置固体废物技术规范》的要求. 关键词:生活垃圾焚烧底灰;响应曲面法;中心复合设计;抗压强度;重金属浸出

中图分类号:TU528.044 文献标志码:A doi:10.3969/j.issn.1007-9629.2024.02.009

RSM Optimization of Incineration Bottom Ash Cementitious Material and Safety Evaluation

LIU Xinzhong^{*}, HUAN Dongdong, QIU Chenhui, ZHANG Mengcheng, YANG Kang (School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China)

Abstract: To recycle the municipal solid waste incineration bottom ash(MSWI-BA), the effects of different active excitation methods on the 28-day compressive strength of mortar test blocks prepared by pretreated MSWI-BA were studied by the method of response surface central composite test method(RSM-CCD). The results show that the MSWI-BA cementitious material has good cementitious activity by active excitation. The RSM-CCD test simulates that the 28-day compressive strength of the cement mortar test block with 10% MSWI-BA reaches 46.04 MPa under the optimal experimental conditions. Under this condition, the 28-day compressive strength of the cement mortar test block reaches 46.15 MPa, which is highly coincident with the predicted value. This method provides a solution for the resource utilization of MSWI-BA. Finally, the safety of the cementitious material is evaluated. The leaching performance of heavy metals meets the requirements of GB 30760—2014 *Technical Specification for Coprocessing of Solid Waste in Cement Kiln*.

Key words : municipal solid waste incineration bottom ash (MSWI-BA) ; response surface method (RSM) ; central composite design; compressive strength; heavy metal leaching

生活垃圾焚烧底灰(MSWI-BA)通常是铝硅酸 盐成分^[1],有利于增大沥青混合料的内摩阻角,使炉 渣沥青混合料具有更高的结构强度^[2].考虑到 MSWI-BA中铝硅酸盐成分和潜在的火山灰反应活 性^[3],有学者尝试将其磨碎作为前体进行利用.此外, 传统的水泥行业存在资源和能源消耗量高、碳排放 量大,还伴随有害气体及少量重金属排放等问题^[4], 可以考虑利用 MSWI-BA 替代传统水泥,将 MSWI-BA中的重金属物质固化进水泥的水化产物 中^[5].游离 CaO 可以加速水泥体系的水化进程^[6],

收稿日期:2023-03-07;修订日期:2023-04-11

基金项目:"十三五"国家重点研发计划项目(2019YFC1904103)

第一作者(通讯作者):刘心中(1963—),男,山东淄博人,福建理工大学教授,硕士生导师,学士.E-mail:174433527@qq.com

Na₂SiO₃可以加速 Al—O、Si—O 键的断裂以及 Ca²⁺ 等的溶出,生成水化硅(铝)酸钙(C-(A)-S-H)凝胶, 提高水泥的强度^[7].

响应曲面法(RSM)综合了试验设计和数学建模,采用多元二次回归方程拟合来获得设计变量的 最优组合和响应目标的最优值^[8],具有试验次数少、 试验周期短、精密度高、预测性能好,以及能研究因 素间交互作用等优点^[9].

实际情况下各因素之间往往存在着交互作用, 因此试验以MSWI-BA胶凝材料为研究对象,以响 应面中心复合试验法(RSM-CCD)为试验设计方 法^[10],研究MSWI-BA 掺量(质量分数)在10%情 况下机械活化时间、活性CaO掺量及Na₂SiO₃掺量 3个因素对MSWI-BA 复合胶凝材料力学性能的影 响,在对MSWI-BA 进行资源化综合利用的基础上 最大程度地提高胶凝材料的力学性能,从而得到胶 凝 材 料 的 最 佳 生 产 配 方.研究结果可以为 MSWI-BA 的安全利用提供基础线索,为可持续发 展做出一定的贡献.

1 试验

1.1 原材料

MSWI-BA由生活垃圾焚烧厂提供.通过振筛机 筛分将试验用MSWI-BA筛选出来,然后经过水洗 和风干处理,备用.硅酸盐水泥(OPC)为福建海螺牌 42.5R普通硅酸盐水泥;砂为标准砂;拌和水为自 来水.

1.2 试验设计

首先,将在实验室条件下自然风化1个月后的 MSWI-BA放入烘箱中,在105℃条件下烘24h后放 入球磨机中,以350 rad/min的转速分别研磨60、90、 120 min;然后,以不同活性CaO掺量、不同机械活化 时间(*t*)和水玻璃(Na₂SiO₃)掺量为变量,RSM-CCD 的设计因素及水平表如表1所示.

> 表1 RSM-CCD的设计因素及水平 Table 1 Design factors and levels of RSM-CCD

	Dester	Level		
Code	F actor	-1	0	1
A	w(CaO)⁰∕₀	4	6	8
В	t/min	60	90	120
С	$w(Na_2SiO_3)/\%$	6	8	10

1.3 试件制备与试验方法

试样为掺10%MSWI-BA的水泥胶砂试块,所

有胶砂试块的制备流程均按照GB/T 17671—2021 《水泥胶砂强度检验方法(ISO法)》进行.

采用蔡司Sigma 300型扫描电子显微镜(SEM), 对复合胶凝材料样品的微观形貌进行检测,采用 Rigaku Ultima IV型X射线衍射仪(XRD)对复合胶 凝材料样品进行晶相分析,采用赛默飞Niolet iN10 型傅里叶变换红外光谱(FTIR)对掺10%MSWI-BA 胶凝材料的化学基团/键进行表征.

重金属(Pb、Cr、Cd、Cu、Ni、Zn、Mn、As)的浸出 行为测试按照HJ781—2016《固体废物22种金属元 素的测定电感耦合等离子体发射光电感耦合等离子 体原子发射光谱仪谱法》进行.

2 结果与讨论

2.1 响应曲面分析

2.1.1 模型的建立与显著性检验

采用 Design-Expert 13.0 软件中的中心复合试验(CCD)对胶砂试块的28 d 抗压强度(Y)进行多元非线性回归分析,试验设计方案及结果见表2.

耒? CCD的设计方家及结果

Table 2 Design plans and results of CCD				
No.	w(CaO)% (A)	$t/\min(B)$	$w(Na_2SiO_3)/\%$ (C)	28 d compressive strength/MPa(Y)
1	4	60	6	36.1
2	8	60	6	38.2
3	4	120	6	43.5
4	8	120	6	44.8
5	4	60	10	39.2
6	8	60	10	37.8
7	4	120	10	43.2
8	8	120	10	43.4
9	4	90	8	43.5
10	8	90	8	45.1
11	6	60	8	40.3
12	6	120	8	45.4
13	6	90	6	43.1
14	6	90	10	45.1
15	6	90	8	44.6
16	6	90	8	44.5
17	6	90	8	45.1
18	6	90	8	46.2
19	6	90	8	45.1
20	6	90	8	44.7

CCD得到的胶砂试块28d抗压强度拟合回归模型方程为:

(1)

$$Y = 45.09 + 0.37A + 2.87B + 0.3C + 0.1AB - 0.575AC - 0.55BC - 0.8818A^2 - 0.33B^2 - 1.08C^2$$

式中:AB、AC、BC为交互项编码值; A^2 、 B^2 、 C^2 为二次项编码值.

对该模型方程进行方差分析和显著性检验,表 3为掺10%MSWI-BA水泥胶砂试块28d抗压强度 回归方程的方差分析.其中:D₁为自由度,表示样本 能自由变化数据的个数:F值为衡量方差分析中组 间和组内差异的离差平方与自由度的比值,F值越 小,说明样本数据中的差异不显著,通常情况下F 值大于1旦显著性值 P<0.05则认为影响显著.由 表3可知:该模型的P<0.0001,说明模型具有高度 的显著性,拟合精度良好,可以利用该响应面近似 模型进行后续的优化设计:失拟项不显著(P= 0.363 4>0.05),表明该模型在整个被研究的回归 区域内拟合较好;拟合系数R²=0.9716,表明此模 型能解释 97.16% 的响应值变化;变异系数 CV= 1.59%,表明试验的可信度和精确度较高[11].此外, 各因素对掺10%MSWI-BA水泥胶砂试块28d抗 压强度的影响从大到小排序为:B>B2>C2>AC> $BC>A^2>A>C>AB.$ 其中, B、 B^2 、 C^2 、AC对掺 10% MSWI-BA 水泥胶砂试块 28 d 抗压强度的影 响极为显著.此外,A、C、AB的P值都大于0.05,说 明他们对掺10% MSWI-BA水泥胶砂试块28 d抗 压强度的影响不显著.因此,不对因素A、B的交互 影响进行分析.

图 1 为掺 10% MSWI-BA 水泥胶砂试块 28 d 抗 压强度的残差图和实际值与预测值.由图 1 可见:残 差的正态概率分布基本在一条直线上;实际值与预 测值均匀地分布在 y=x 直线上.说明回归方程的拟 合 度 较 高 且 模 型 的 适 应 性 较 好,能 够 预 测 掺 10% MSWI-BA 水泥胶砂试块的 28 d 抗压强度.

Source	Sum of squares	$D_{\rm f}$	Mean square	<i>F</i> -value	<i>P</i> -value
Model	159.9800	9	17.7800	38.0800	< 0.0001
A	1.4400	1	1.4400	3.0900	0.1091
В	82.3700	1	82.3700	176.4500	< 0.0001
С	0.9000	1	0.9000	1.9300	0.1951
AB	0.0800	1	0.0800	0.1714	0.6876
AC	2.6500	1	2.6500	5.6700	0.0386
BC	2.4200	1	2.4200	5.1800	0.0460
A^2	2.1400	1	2.1400	4.5800	0.0580
B^2	14.9500	1	14.9500	32.0300	0.0002
C^2	3.2200	1	3.2200	6.8900	0.0253
Residual	4.6700	10	0.4668		
Lack of fit	2.7100	5	0.5430	1.3900	0.3634
Pure error	1.9500	5	0.3907		
Cor total	164.6500	19			

2.1.2 等高线和响应曲面分析

图 2 为各因素对掺 10% MSWI-BA 水泥胶砂试 块 28 d 抗压强度的交互作用.由图 2 可见:

(1)当机械活化时间在 90 min 时,等高线的形状 为椭圆形,表明A、C间的交互作用显著.随着 CaO 和 Na₂SiO₃掺量的升高,响应面整体呈现先上升后下降 的趋势,表现为上凸球面.因此,在合适的 CaO 和 Na₂SiO₃掺量下,掺 10% MSWI-BA 水泥胶砂试块的 28 d抗压强度具有极大值,该极值点出现在 CaO 掺 量 5%~8%、Na₂SiO₃掺量 6%~9% 时.

(2)当CaO掺量为6%时,等高线的形状为半椭圆形,表明B、C间的交互作用显著.随着机械活化时间的增加和Na₂SiO₃掺量的增加,响应面整体呈现先

表 3 回归方程的方差分析表 Table 3 Analysis of variance of regression equation

上升后下降的趋势,表现为上凸球面.因此,在合适的机械活化时间和 Na₂SiO₃ 掺量下,掺 10% MSWI-BA 水泥胶砂试块 28 d 抗压强度的极值点出现在机械活化时间 80~120 min、Na₂SiO₃ 掺量 7%~10% 时.

(3)图 2(a)的椭圆比图 2(c)中的椭圆更加扁平, 等高线分布更均匀,说明A、C之间的交互作用更明显.图 2(d)的等高线分布不均匀,说明其中主要影响 因素占据优势,另一因素与其的交互影响不显著.结 合表3可知,各因素之间的交互作用对胶砂试块28 d 抗压强度的影响从大到小排序为:AC>BC>AB.

2.1.3 最优制备条件及模型验证

通过 Design-Expert 13.0软件优化模拟出的胶 砂试块的最优制备条件为:活性 CaO 掺量为 6.56%、 机械活化时间为 109 min、Na₂SiO₃掺量为 7.81%,此 时掺 10% MSWI-BA 水泥胶砂试块 28 d抗压强度的 预测值为 46.04 MPa,实测值为 46.15 MPa.实测值与 预测值的相对误差约为 0.24%,表明该模型能够很 好地反映和预测各因素对掺 10% MSWI-BA 水泥胶 砂试块 28 d抗压强度的影响.同等试验环境下未经 处理的纯水泥的 28 d抗压强度仅为 44.60 MPa,低于 掺 10% MSWI-BA 水泥胶砂试块的 28 d抗压强度, 说明掺 10% MSWI-BA 胶砂试块的 28 d抗压强度要 优于纯水泥胶砂试块.

2.2 MSWI-BA胶凝材料的特性

2.2.1 XRD分析

图 3 为 纯 水 泥 胶 砂 试 块 (OPC) 和 掺 10% MSWI-BA 水 泥 胶 砂 试 块 (OPC + 10% MSWI-BA) 的 XRD 图 谱 . 由 图 3 可 见:

(1)2个样品的主要结晶组成几乎相同,主要结晶相 为石英(SiO₂)、莫来石(Al_{2.7}O_{4.8}Si_{0.6})、CaCO₃、Ca(OH)₂ 等.在最佳因素条件下,掺10% MSWI-BA水泥胶砂 试块的SiO₂的峰值高于纯水泥,可以归因于掺10% MSWI-BA水泥胶砂试块中 Na₂SiO₃的添加.掺 10% MSWI-BA水泥胶砂试块中 Ca(OH)₂的峰值 低于纯水泥,这可能是由于添加的活性CaO与 Na₂SiO₃一起反应,生成了大量的钙铝硅酸钠水合物 (C-A-S-H)凝胶.这说明MSWI-BA中的的活性SiO₂ 和Al₂O₃与活性CaO以及水泥水化产生的Ca(OH)₂ 发生了火山灰反应,使得凝胶吸收水分,与未水化的 水泥颗粒聚集在一起,并逐渐包裹水泥颗粒,从而产 生水泥强度.

(2)值得注意的是,掺10% MSWI-BA水泥胶砂 试块中C-A-S-H凝胶的数量要多于纯水泥,其位于 21°峰的强度更高,这就解释了为什么掺10% MSWI-BA水泥胶砂试块的28d抗压强度要高于未

图 3 纯水泥胶砂试块和掺 10% MSWI-BA 胶砂试块 的 XRD 图谱

Fig. 3 XRD patterns of OPC and OPC+10% MSWI-BA mortar test block

经任何处理的纯水泥胶砂试块.

2.2.2 SEM分析

图 4、5 分 别 为 纯 水 泥 胶 砂 试 块 和 掺 10%MSWI-BA胶砂试块的SEM照片.由图4、5可见:

图 4 纯水泥胶砂试块的 SEM 照片 Fig. 4 SEM image of OPC mortar test block

图 5 掺 10% MSWI-BA 胶砂试块的 SEM 照片 Fig. 5 SEM image of OPC and OPC+10% MSWI-BA mortar test block

(1)层状堆积的图像为水化硅酸钙(C-S-H)凝胶,是承担胶砂试块强度的主要成分.此外,还有针状化合物,其主要组成为C-A-S-H凝胶,还有正多面体形状的Ca(OH)2.

(2)2幅照片中都存在细小的微孔,可能是 MSWII-BA中微量的Al或其他有色金属被氧化,释 放出大量氢气导致的.值得注意的是,掺 10%MSWI-BA胶砂试块的表观更为致密,原因是掺 MSWI-BA制备胶砂试块时加入了活性CaO和 Na₂SiO₃用于激发胶凝材料的活性,使得试块在活化 过程中生成更多的C-S-H凝胶和C-A-S-H凝胶,大 量凝胶堆积在试块的内部和表面,使得胶砂试块的 强度高于纯水泥.

2.2.3 FTIR分析

图 6 为掺 10% MSWI-BA 胶砂试块和纯水泥胶 砂试块的 FTIR 图谱.由图 6 可见:在1 410 cm⁻¹处出 现的不对称拉伸 C=O键,可能是由于底灰颗粒中含 有碳酸盐矿物或空气与底灰的碳酸化作用^[12];在 967、450 cm⁻¹处检测到 Si—O和 Al—O的拉伸振动 峰,定性地说明了底灰样品的聚合程度.Burnley等^[13] 报道 Si/Al—O带的强度与颗粒尺寸和比表面积有很 强的相关性,机械活化时间因素对 28 d抗压强度的 影响也证实了这一点.此外,Kumar等^[14]报道了位于 1 014 cm⁻¹附近的 Si—O键可以归因于 Si—O_n(n= 0~2)的存在,这是一种单体 Si和 Si—O链结构,具有 较高的反应性.在试验中,掺 10% MSWI-BA 的试块 添加激发剂后试样 Si—O/Al—O键的强度最高,与 测试的抗压强度结果吻合较好.

图 6 掺 10% MSWI-BA 胶砂试块和纯水泥胶砂试块 的 FTIR 图谱

Fig. 6 FTIR spectra of OPC+10% MSWI-BA and OPC mortar test blocks

2.2.4 安全性评价

MSWI-BA虽然含有各种有毒物质,尤其是重金属.利用MSWI-BA 替代水泥混合料有可能会导致 重金属浸出,从而造成严重的环境破坏.鉴于此,将 掺MSWI-BA 复合材料在标准状况下养护28d后破 碎,并对其进行重金属浸出试验,结果见表4.由表4 可见:虽然掺10%MSWI-BA 胶砂试块的重金属浸 出浓度略高于纯水泥胶砂试块,却远低于GB 5085.3— 2007《危险废物鉴别标准 浸出毒性鉴别》的相应规 定;掺10%MSWI-BA 胶砂试块的重金属浸出浓度 也远远地低于纯MSWI-BA,这说明胶砂试块中的水 化产物能有效地固定重金属,使重金属的浸出浓度 在安全范围内.因此,掺10%MSWI-BA胶凝材料对 环境是安全的.

表 4 处理前后各类材料重金属浸出情况 Table 4 Heavy metal leaching of various materials before and after treatment

$c/(\mathrm{mg}\cdot\mathrm{L}^{-1})$	MSWI-BA	OPC +10% MSWI-BA	OPC	GB 30760— 2014
Pb	1.562	0.165	0.060	0.300
Cr	2.140	0.159	0.110	0.200
Cd	0.039	0.019	0.060	0.030
Cu	5.983	0.271	0.050	1.000
Ni	0.651	0.002	0.000	0.200
Zn	3.498	0.077	0.170	1.000
Mn	5.411	0.380	0.300	1.000
As	0.241	0.032	0.040	0.100

3 结论

(1) 在活性 CaO 掺量为 6.56%、机械活化时间 为 109 min、Na₂SiO₃掺量为 7.81% 的最佳条件下, 掺 10% 生活垃圾焚烧底灰(MSWI-BA)胶砂试块 28 d 抗压强度的响应面中心复合试验法预测值为 46.04 MPa,实测值为 46.15 MPa,二者高度接近,且 掺 10% MSWI-BA 胶砂试块的 28 d 抗压强度要优于 纯水泥胶砂试块.

(2)在掺10%MSWI-BA的胶砂试块中,随着机 械活化时间的增加,活性CaO和Na₂SiO₃能够帮助胶 砂试块产生更多的水化硅酸钙凝胶和水化硅铝酸钙 凝胶,其附着在胶砂试块表面和内部,在一定范围内 有效提高胶砂试块的28 d抗压强度.

(3) 掺 10% MSWI-BA 胶砂试块的重金属浸出 浓度虽然高于纯水泥胶砂试块,但满足国家标准中 对重金属浸出含量的限定,并且远低于纯 MSWI-BA 的重金属浸出浓度,说明该方式能有效固定 MSWI-BA的重金属,可以在水泥掺合料中使用.

参考文献:

- ZHANG Z, LI G Q, YANG Y X, et al. Thermodynamics of the vitrified bottom ash slag from municipal solid waste incinerators-phase relations of CaO-SiO₂-Na₂O oxide system[J]. Advanced Materials Research, 2014, 881-883:574-578.
- [2] 胡明君,李立寒,王琎晨,等.炉渣沥青混合料路用性能与浸出 特性试验研究[J].建筑材料学报,2019,22(3):480-486.
 HU Mingjun, LI Lihan, WANG Jinchen, et al. Experimental

study on road performance and leaching characteristics of slag asphalt mixture[J]. Journal of Building Materials, 2019, 22(3): 480-486. (in Chinese)

- [3] TANG P, CHEN W, XUAN D X, et al. Investigation of cementitious properties of different constituents in municipal solid waste incineration bottom ash as supplementary cementitious materials[J]. Journal of Cleaner Production, 2020, 258:120675.
- [4] 郭晓璐,李寅雪,袁淑婷.水泥生命周期评价及其低环境负荷研究进展[J].建筑材料学报,2023,26(6):660-669.
 GUO Xiaolu, LI Yinxue, YUAN Shuting. Research progress of cement life cycle assessment and its low environmental load[J].
 Journal of Building Materials, 2023, 26(6):660-669. (in Chinese)
- [5] 袁玲,施惠生.焚烧灰中重金属溶出行为及水泥固化机理[J]. 建筑材料学报,2004,7(1):76-80.
 YUAN Ling, SHI Huisheng. Dissolution behavior of heavy metals in incineration ash and solidification mechanism of cement[J]. Journal of Building Materials, 2004,7(1):76-80. (in Chinese)
- [6] 唐冬云,谢肖礼,李华,等.游离氧化钙在水泥浆体中的水化历程定量研究[J].建筑材料学报,2020,23(1):18-24.
 TANG Dongyun, XIE Xiaoli, LI Hua, et al. Quantitative study on hydration process of free calcium oxide in cement paste[J].
 Journal of Building Materials, 2020, 23(1):18-24. (in Chinese)
- [7] 王永辉,陈佩圆,张立恒,等. MgO/硅酸钠复合对碱矿渣水化和 力学特性的影响[J]. 建筑材料学报, 2023, 26(2):186-192..
 WANG Yonghui, CHEN Peiyuan, ZHANG Liheng, et al. Effect of MgO/sodium silicate composite on hydration and mechanical properties of alkali slag[J]. Journal of Building Materials, 2023, 26(2):186-192. (in Chinese)
- [8] BEZERRA M A, SANTELLI R E, OLIVEIRA E P, et al. Response surface methodology(RSM) as a tool for optimization in analytical chemistry[J]. Talanta, 2008, 76(5):965-977.
- [9] DANMALIKI G I, SALEH T A, SHAMSUDDEEN A A. Response surface methodology optimization of adsorptive desulfurization on nickel/activated carbon [J]. Chemical Engineering Journal, 2017, 313:993-1003.
- [10] 张凯,周梅,李超,等.基于RSM-CCD的自燃煤矸石粉-水泥砂浆配比优化[J].建筑材料学报,2023,26(3):299-309.
 ZHANG Kai, ZHOU Mei, LI Chao, et al. Optimization of spontaneous combustion coal gangue powder-cement mortar ratio based on RSM-CCD[J]. Journal of Building Materials, 2023, 26 (3):299-309. (in Chinese)
- [11] 郝成亮,郭金玉,初茉,等.基于响应面法的长焰煤浮选工艺模型及因子作用分析[J].矿业科学学报,2019,4(6):547-557.
 HAO Chengliang, GUO Jinyu, CHU Mo, et al. Analysis of flotation process model and factor effect of long flame coal based on response surface method[J]. Journal of Mining Science, 2019,4(6):547-557. (in Chinese)
- [12] WONGSA A, BOONSERM K, WAISURASINGHA C, et al. Use of municipal solid waste incinerator(MSWI) bottom ash in high calcium fly ash geopolymer matrix[J]. Journal of Cleaner Production, 2017, 148:49-59.
- [13] BURNLEY S J. The use of chemical composition data in waste (下转第 173页)