**文章编号:**1007-9629(2024)08-0757-07

# 极端湿热环境对CFRP/钢界面性能的影响

李传习<sup>1,2,\*</sup>, 司睹英胡<sup>1</sup>, 高有为<sup>1</sup>

(1.长沙理工大学 土木工程学院,湖南 长沙 410076;2.广西大学 土木建筑工程学院,广西 南宁 530004)

摘要:为掌握极端湿热环境下CFRP/钢界面性能的退化机理,用Sika-30胶黏剂制作了12个CFRP/ 钢双搭接试件,并在70℃的模拟海水中浸泡不同时间后进行拉伸剪切试验.结果表明:CFRP/钢双 搭接试件的破坏模式受浸泡时长的影响较小;CFRP/钢界面平均抗剪强度随浸泡时长呈先上升后 下降趋势;浸泡90d后,CFRP/钢界面平均抗剪强度较未浸泡试件下降了35.6%.

关键词:CFRP/钢;破坏模式;黏结滑移本构关系;抗剪强度

**中图分类号:**TU599;TU391 **文献标志码:**A **doi:**10.3969/j.issn.1007-9629.2024.08.011

# Influence of Eextreme Wet-Heat Environment on Adhesive Bonding Performance of CFRP/steel Interfaces

LI Chuanxi<sup>1,2,\*</sup>, SIDU Yinghu<sup>1</sup>, GAO Youwei<sup>1</sup>

School of Civil Engineering, Changsha University of Science and Technoloy, Changsha 410076, China;
 School of Civil Engineering and Archtecture, Guangxi University, Nanning 530004, China)

**Abstract:** To understand the deterioration mechanism of CFRP/steel interface properties under extreme hot and humid environment, 12 of CFRP/steel double lap specimens using Sika-30 adhesive were prepared. These specimens were immersed in simulated seawater at 70 °C for different time for tensile shear test. The results show that the failure mode of these specimens were less affected by the soaking time. The average shear strength of the CFRP/steel interfaces increased first and then decreased with the soaking time. After soaking for 90 days, the average shear strength of the CFRP/steel interfaces decreased by 35.6% compared with that of unsoaked specimen.

Key words: CFRP/steel; failure mode; bond-slip constitutive relation; sheer strength

碳纤维增强聚合物(CFRP)因其轻质、高强、耐腐蚀等优点被广泛用于加固结构<sup>[14]</sup>.然而,在使用 CFRP板加固钢结构时,二者之间的黏结界面往往成 为薄弱环节<sup>[5-7]</sup>,容易受温度、湿度、氯盐侵蚀等外界 环境因素的影响.其中,温度和湿度是影响界面黏结 性能的主要因素<sup>[8-11]</sup>.Heshmati等<sup>[12]</sup>发现,在45℃水 浴中浸泡1a后的CFRP/钢双搭接试件,其强度明显 低于在20℃水浴中浸泡的试件.同样,Nguyen等<sup>[13]</sup> 也发现,在模拟海水条件下,CFRP/钢试件的强度和 刚度退化速度比在恒温恒湿条件(50℃、90% 相对湿 度)下更快.值得注意的是,当环境温度超过胶黏剂 玻璃转化温度(T<sub>g</sub>)时,CFRP/钢双搭接试件的强度 和刚度会显著下降<sup>[14-15]</sup>.综上,温度、湿度及老化时间 对CFRP/钢界面的黏结性能均有影响,但既往研究条 件多为一般环境(温度低于50℃),而在现实中钢结构 内部温度可超60℃,这超过了大多数胶黏剂的T<sub>g</sub>.当 温度超过60℃时,大多数环氧树脂类胶黏剂会软化, 导致空气中的水分侵蚀速度加快,进而大幅降低 CFRP与钢之间的黏结性能.此外,CFRP/钢界面极 限承载能力计算模型主要基于一般环境<sup>[12,16]</sup>条件建立

收稿日期:2023-10-09;修订日期:2024-01-04

基金项目:国家自然科学基金资助项目(51778069);湖南省自然科学基金资助项目(2021JJ40173);湖南省研究生科研创新重点项目 (QL20210180)

第一作者(通迅作者):李传习(1963—),男,湖南衡阳人,长沙理工大学教授,博士生导师,博士.E-mail: lichuanxi2@163.com

的,其在极端环境下的适用性尚待验证.

Sika-30胶黏剂由于其高强度和较高的 T<sub>g</sub>(62 ℃, 该温度高于大多数环氧树脂胶的 T<sub>g</sub><sup>[17-19]</sup>),在高温环境 下表现出较好的稳定性,因此常被用于 CFRP 加固工 程.因此,本文采用 Sika-30 胶黏剂制备了 12 个 CFRP/钢双搭接试件,并在 70 ℃的模拟海水水浴环 境中进行测试.通过对试件的破坏模式、极限承载能 力、界面剪应力以及黏结-滑移本构关系的分析,揭 示高温水浴环境下 CFRP/钢界面黏结性能的退化机 理,并探讨该环境下 CFRP/钢界面极限承载能力的 计算方法.

## 1 试验

#### 1.1 试验材料

试验采用了型号为Q345B的钢板,以及Sika-30 胶黏剂和南京海拓公司生产的单向CFRP板.所有相关材料参数均由供应商提供,并详细列于表1中.

表1 钢板、CFRP板和Sika-30的尺寸和力学指标 Table 1 Size and main mechanical indexes of steel plate, CFRP plate and Sika-30

| Material | Thickness/<br>mm | Width/<br>mm | Tensile<br>strength/<br>MPa | Elasticity/<br>GPa | Elongation<br>at break / % |
|----------|------------------|--------------|-----------------------------|--------------------|----------------------------|
| Steel    | 12.0             | 50           | 514.0                       | 206.00             | -                          |
| CFRP     | 1.4              | 50           | 2 263.0                     | 161.20             | 1.65                       |
| Sika-30  | -                | 50           | 25.3                        | 12.13              | 0.22                       |

#### 1.2 试件设计与制备

试件的设计(见图1)和制作分别参照美国标准 ASTMD 3528-96(Reapproved 2008)Standard Test Method for Strength Properties of Double Lap Shear Adhesire Joints by Tension Loading和国家军用标准 GJB 3383—1998《胶接耐久性试验方法》.本研究共 制作12个试件,每个试件由2块钢板和2块CFRP板 组成,具体参数如表2所示.

为模拟海水环境,试验采用了5%的NaCl溶液, 并将试件分为4组,即25℃下水浴0d为1组,70℃下 水浴30、60、90d各1组,每组包含3个试件.

在试验开始前,对钢板和CFRP的表面进行抛 光处理,确保钢板接触界面光滑,CFRP板结合界面 无树脂基质,并用丙酮擦拭钢板与CFRP的接触界 面.制作过程中,首先在一块CFRP板上涂抹Sika-30 结构胶,撒上直径为1mm的钢球以控制结构胶层的 厚度,然后对准粘贴钢板,再用相同方法粘贴另一块 CFRP板.之后,试件被压重4h以挤出多余的结构 胶,并在常温下养护7d.养护完成后,试件被分组放 入70℃的水浴箱中.试件的尺寸、形状及CFRP板表 面应变片的布置如图1所示.

水浴结束后,对试件进行静力拉伸破坏试验,并 对其荷载-位移曲线、剪切强度及破坏模式进行了分 析,结果详见表2.

#### 1.3 静力拉伸试验方法

试验在 300 kN高低温箱拉伸试验机上完成.试 验开始前,先对试件进行精确对中,并将高低温箱温 度调至 25℃.考虑到温度的变化对夹具和试件变形 的影响,本试验在确定高低温箱内温度稳定至 25℃ 后才夹紧试件的固定端,并开始加载.加载过程中, 使用静态应变测试系统来采集应变数据,并确保加 载速率为0.3 mm/min.

## 2 结果与分析

#### 2.1 破坏模式

为方便统计和分析,本文定义了3种破坏模式: 当试件出现CFRP板层离破坏时,称为a型破坏;当 试件黏结层与钢界面剥离破坏时,称为b型破坏;当 黏合剂失效时,称为c型破坏.





| Table 2 Sample parameters and test results of water bath test |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Specimen                                                      | Ultimate bearing capacity /kN                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Limit displacement/mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bond strength/MPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                               | $P_{\rm ult}$                                                                                                                                                                                                                                                            | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $D_{\max}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 25 °CSika30-1                                                 | 126.94                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a/b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 25 °CSika30-2                                                 | 106.32                                                                                                                                                                                                                                                                   | 111.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 25 °CSika30-3                                                 | 102.03                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a/b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 70 ℃-30 d-1                                                   | 113.82                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a/b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 70 °C-30 d-2                                                  | 105.21                                                                                                                                                                                                                                                                   | 129.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a/b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 70 ℃-30 d-3                                                   | 170.33                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a/b/c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 70 ℃-60 d-1                                                   | 72.44                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a/b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 70 °C-60 d-2                                                  | 95.08                                                                                                                                                                                                                                                                    | 78.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 70 ℃-60 d-3                                                   | 69.13                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a/b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 70 ℃-90 d-1                                                   | 86.11                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a/b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 70 °C-90 d-2                                                  | 54.27                                                                                                                                                                                                                                                                    | 71.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a/b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 70 ℃-90 d-3                                                   | 75.16                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a/b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                               | Specimen           25 °CSika30-1           25 °CSika30-2           25 °CSika30-3           70 °C-30 d-1           70 °C-30 d-2           70 °C-60 d-3           70 °C-60 d-2           70 °C-60 d-3           70 °C-90 d-1           70 °C-90 d-2           70 °C-90 d-3 | Ultimate bearin           Specimen         Ultimate bearin           25 °CSika30-1         126.94           25 °CSika30-2         106.32           25 °CSika30-3         102.03           70 °C-30 d-1         113.82           70 °C-30 d-2         105.21           70 °C-30 d-3         170.33           70 °C-60 d-1         72.44           70 °C-60 d-2         95.08           70 °C-90 d-1         86.11           70 °C-90 d-2         54.27           70 °C-90 d-3         75.16 | Table 2         Sample para           Ultimate bearing capacity /kN         Pult         Average           25 °CSika30-1         126.94         111.76           25 °CSika30-2         106.32         111.76           25 °CSika30-3         102.03         102.03           70 °C-30 d-1         113.82         129.78           70 °C-30 d-2         105.21         129.78           70 °C-30 d-3         170.33         170.33           70 °C-60 d-1         72.44         78.88           70 °C-60 d-2         95.08         78.88           70 °C-60 d-3         69.13         13           70 °C-90 d-1         86.11         70.84           70 °C-90 d-2         54.27         71.84           70 °C-90 d-3         75.16         14 | Table 2         Sample parameters and test           Specimen         Ultimate bearing capacity /kN         Limit displ. $P_{ult}$ Average $D_{max}$ 25 °CSika30-1         126.94         7.51           25 °CSika30-2         106.32         111.76         7.42           25 °CSika30-3         102.03         7.03           70 °C-30 d-1         113.82         8.35           70 °C-30 d-2         105.21         129.78         8.20           70 °C-30 d-3         170.33         12.00         120.00           70 °C-60 d-1         72.44         7.15         70           70 °C-60 d-2         95.08         78.88         7.70           70 °C-60 d-3         69.13         6.79         6.79           70 °C-90 d-1         86.11         8.50         70           70 °C-90 d-2         54.27         71.84         6.00           70 °C-90 d-3         75.16         6.37         6.37 | Table 2         Sample parameters and test results of wate           Specimen         Ultimate bearing capacity /kN         Limit displacement/mm $P_{ult}$ Average $D_{max}$ Average           25 °CSika30-1         126.94         7.51         7.12           25 °CSika30-2         106.32         111.76         7.42         7.32           25 °CSika30-3         102.03         7.03         7.03           70 °C-30 d-1         113.82         8.35         9.52           70 °C-30 d-2         105.21         129.78         8.20         9.52           70 °C-30 d-3         170.33         12.00         7.21         7.21           70 °C-60 d-1         72.44         7.15         7.21           70 °C-60 d-2         95.08         78.88         7.70         7.21           70 °C-60 d-3         69.13         6.79         7.21           70 °C-90 d-1         86.11         8.50         7.03           70 °C-90 d-2         54.27         71.84         6.00         6.96           70 °C-90 d-3         75.16         6.37         7.15         7.16 | Initiality         Initiality         Initiality         Initiality         Bond st           Specimen         P <sub>ult</sub> Average         D <sub>max</sub> Average         τ           25 °CSika30-1         126.94         7.51         6.35           25 °CSika30-2         106.32         111.76         7.42         7.32         5.31           25 °CSika30-3         102.03         7.03         5.10         5.10           70 °C-30 d-1         113.82         8.35         5.69           70 °C-30 d-2         105.21         129.78         8.20         9.52         5.26           70 °C-30 d-3         170.33         12.00         8.51         5.69           70 °C-60 d-1         72.44         7.15         3.62           70 °C-60 d-2         95.08         78.88         7.70         7.21         4.75           70 °C-60 d-3         69.13         6.79         3.46         5.46           70 °C-90 d-1         86.11         8.50         4.31           70 °C-90 d-2         54.27         71.84         6.00         6.96         2.71           70 °C-90 d-3         75.16         6.37         3.76         3.76 <td>Initial 2         Sample parameters and test results of water barn test           Specimen         Ultimate bearing capacity /kN         Limit displacement/mm         Bond strength/MPa           25 °CSika30-1         126.94         7.51         6.35           25 °CSika30-2         106.32         111.76         7.42         7.32         5.31         5.59           25 °CSika30-3         102.03         7.03         5.10            70 °C-30 d-1         113.82         8.35         5.69            70 °C-30 d-2         105.21         129.78         8.20         9.52         5.26         6.49           70 °C-30 d-3         170.33         12.00         8.51             70 °C-60 d-1         72.44         7.15         3.62            70 °C-60 d-2         95.08         78.88         7.70         7.21         4.75         3.94           70 °C-90 d-1         86.11         8.50         4.31              70 °C-90 d-2         54.27         71.84         6.00         6.96         2.71         3.60           70 °C-90 d-3         75.16         6.37         3.76         3.76         3.76</td> | Initial 2         Sample parameters and test results of water barn test           Specimen         Ultimate bearing capacity /kN         Limit displacement/mm         Bond strength/MPa           25 °CSika30-1         126.94         7.51         6.35           25 °CSika30-2         106.32         111.76         7.42         7.32         5.31         5.59           25 °CSika30-3         102.03         7.03         5.10            70 °C-30 d-1         113.82         8.35         5.69            70 °C-30 d-2         105.21         129.78         8.20         9.52         5.26         6.49           70 °C-30 d-3         170.33         12.00         8.51             70 °C-60 d-1         72.44         7.15         3.62            70 °C-60 d-2         95.08         78.88         7.70         7.21         4.75         3.94           70 °C-90 d-1         86.11         8.50         4.31              70 °C-90 d-2         54.27         71.84         6.00         6.96         2.71         3.60           70 °C-90 d-3         75.16         6.37         3.76         3.76         3.76 |

表2 水浴试验的试件参数与试验结果 nd toot v aculta of

Note:  $P_{ult}$ -indicates ultimate tensile capacity;  $D_{max}$ -indicates limit displacement;  $\tau$ -indicates bond strength; a-indicates the CFRP layer failure; b—indicates the bond layer and steel interface stripping failure; c—indicates adhesive failure; '\*'/'\*'or'\*'/'\*'-indicates two or more mixed failure modes.

图 2 展示了 CFRP/钢双搭接试件的界面破坏情 况.由图2可以观察到,4组试件的主要破坏模式均 为a型.对于水浴0、30、60d的试件组,不难发现在 靠近CFRP板与钢板黏贴段前端(如图1所示坐标 原点附近)的一小部分区域,由于应力集中导致了钢 与黏结剂界面的脱黏破坏.得注意的是,水浴90d 的试件组表现出了与其他组不同的破坏模式,即 CFRP板碳纤维浅表层离破坏并伴随纵向撕裂的现 象.经过分析,本文认为这是因为CFRP板层间强度 低于Sika-30胶黏剂与CFRP板和钢板的之间界面 强度,同时也低于Sika-30胶黏剂的内聚剪切强度.

#### 2.2 荷载位移曲线

图3描绘了4组试件在加载过程中的荷载-位移 曲线,其中位移代表固定端与加载端之间的相对位

在极限位移方面,4组试件的平均极限位移分别

为7.48(水浴0d组)、9.52(水浴30d组)、7.21(水浴

60 d 组)、6.96 mm(水浴 90 d 组). 与水浴 0 d 组相比,

水浴 30 d 组试件的极限位移增加了 27%,这可能与

移.从图3可以看出:水浴0d组3个试件的荷载-位 移曲线高度重合,显示出很好的一致性;随着水浴时 间的增加,水浴30、60、90d组中的试件荷载-位移曲 线之间的偏差逐渐增大.这表明在高温水浴环境下, 碳纤维板基体或黏结剂基体的性能离散性随水浴时 间延长而增加.

对各组试件的平均极限荷载进行统计,结果分 别为111.22(水浴0d组)、129.78(水浴30d组)、 78.88(水浴60d组)、71.84 kN(水浴90d组).相较 于水浴0d组,水浴30d组试件的极限荷载提升了 17%,这可能是由于黏结剂的后固化作用增强了黏 结强度.然而,随着水浴时间的进一步延长,水浴 60、90 d 组 试 件 极 的 限 荷 载 分 别 下 降 了 29% 和 36%,显示出水浴对试件性能的负面影响.



(a) 0 d





(d) 90 d

黏结剂后固化导致的性能提升有关.然而,水浴60、 90d组试件的极限位移分别下降了4%和7%,表明 长时间的水浴处理对试件的变形能力也产生了不利 影响.



图 3 加载过程中 CFRP/钢双搭接试件荷载位移曲线 Fig. 3 Load-displacement curves for CFRP/steel double lap specimens during loading

综上所述,试件的极限荷载和极限位移随着 水浴时间的增加呈现下降趋势,这可能与水分子 对粘结剂和碳纤维板基体的侵蚀作用有关.尽管 如此,在粘结剂后固化的影响下,水浴 30 d 组的试 件在极限荷载和极限位移方面仍表现出一定程度 的提升.

#### 2.3 CFRP/钢黏结界面剪应力分布

根据相邻2个应变片*i、i*-1的正应变差值变化, 算出*i、i*-1两点之间的界面剪应力<sup>[20]</sup>(应变片从原点 向固定端依次编号,i为正整数).

$$(\tau_{\text{average}})_{i,i-1} = \frac{\bigtriangleup \varepsilon_{i,i-1} E_{p} t_{p}}{\bigtriangleup l_{i,i-1}} = \frac{(\varepsilon_{i} - \varepsilon_{i-1}) E_{p} t_{p}}{l_{i} - l_{i-1}} \quad (1)$$

式中:( $\tau_{average}$ )<sub>*i*,*i*-1</sub>为相邻2个测点*i*,*i*-1之间界面平 均剪应力;  $\Delta \varepsilon_{ij}$ 为两相邻测点正应变的差值,即  $\Delta \varepsilon_{i,i-1} = \varepsilon_i - \varepsilon_{i-1}; E_p, t_p$ 分别是CFRP板的弹性模 量和厚度;  $\Delta l_{i,i-1} = l_i - l_{i-1},$ 即为应变片*i*,*i*-1两点 间距离.

图4为加载过程中CFRP/钢黏结界面剪应力分 布情况.从图4可看出,在试件加载过程中,界面剪应 力在坐标原点附近较大.在图4(a)~(c)中,距坐标原 点23 mm处的剪应力随着荷载的增加先增加到一定 的程度后急剧减小并反向增大.这是由于位于前端的 黏层在应力增加过程中受损或达到了应力强度极限, 导致CFRP板与钢板界面损伤或脱黏,并且前端黏层 的顶托作用使CFRP板受反向作用力进而导致CFRP 板上剪应力反向减小.在图4(a)~(c)中,随着荷载达 到最后几级,长度方向分布的剪应力最大值逐渐向后 转移并反超前端CFRP板的剪应力.这表明随着荷载 的增大,前端剪应力达到或超过CFRP板与钢板结合 层强度,剪应力向后传递.在图4(d),剪应力在前端最 大,0~50 mm区间基本不变,而后呈指数型下降.



Fig. 4 Shear stress distribution of CFRP/steel bonding interfaces during loading

#### 2.4 CFRP/钢黏结滑移本构关系

黏结滑移本构(剪应力-滑移曲线)能够反应界 面局部受力及黏结失效过程.考虑到CFRP板与钢 板的刚度差,假定试件的前端CFRP板与钢板黏结 部分的端部滑移量为零<sup>[6]</sup>.因此,从试件的前端到测 点*i*对CFRP表面应变数值积分,可得出*i*-1与*i*之间 的中点滑移量*s*<sub>*i*-1/2</sub>:

$$s_{i-1/2} = \frac{\varepsilon_i + \varepsilon_{i-1}}{4} (l_i - l_{i-1}) + \frac{\varepsilon_{i-1} + \varepsilon_{i-2}}{2} (l_{i-1} - l_{i-2}) + \sum_{i=3}^{i} \frac{\varepsilon_{i-2} + \varepsilon_{i-3}}{2} (l_{i-2} - l_{i-3})$$
(2)

结合式(1)和式(2),可推导出不同荷载经历下 各测点的界面剪应力与滑移之间的关系式(3).

$$S_{i-1/2} = E_{p} t_{p} \left( \frac{\triangle \varepsilon_{i,i-1}^{2}}{4(\tau_{\text{average}})_{i,i-1}} + \frac{\triangle \varepsilon_{i-1,i-2}^{2}}{2(\tau_{\text{average}})_{i-1,i-2}} + \frac{\sum_{i=3}^{i} \frac{\triangle \varepsilon_{i-2,i-3}^{2}}{2(\tau_{\text{average}})_{i-2,i-3}}}{2(\tau_{\text{average}})_{i-2,i-3}} \right)$$
(3)

由图4可知,所测试试件均在离固定端40 mm处 稳定,且该点经历了复合结构的整个损伤发展过程, 画出该点加载历史的剪应力-滑移本构关系图(图 5),对图中散点进行曲线拟合,相关系数均为0.97以 上,拟合度较好.对图5(a)~(d)各曲线进行对比分 析,表明CFRP/钢黏结试件水浴时间不同,界面黏结 滑移曲线也有差异.用双折线表示水浴0、30、60 d组 试件的界面黏结滑移曲线,采用一段抛物线加一段 直线表示水浴90 d组试件的界面黏结滑移曲线.所 有试件的黏结滑移曲线后段都出现明显的下降,提 示界面劣化在加载后期相对缓慢.

峰值剪应力 $\tau_{f}$ 、刚度K、界面破坏能 $G_{f}$ 及单元失效时极限滑移量 $\delta_{f}$ 常用于描述黏结滑移本构曲线<sup>[6]</sup>. 刚度K反应了本构关系曲线的斜率;极限滑移量 $\delta_{f}$ 表示当峰值剪应力达到峰值 $\tau_{f}$ 时,材料发生失效的局部 滑移量;界面破坏能 $G_{f}$ 为 $\tau$ -s曲线所包围的面积,通常 利用微积分进行计算,也可以通过经验公式进行 估算<sup>[21]</sup>:

$$G_{\rm f}' = 0.5\tau_{\rm f}\delta_{\rm f} \tag{4}$$

 $G_{t}$ 是通过积分计算得出的精确解; $G'_{t}$ 是通过式 (4)经验性地解出的值.表3列出了各组试件界面黏 结滑移本构参数的测试和计算结果.计算结果显示 不同试件组的本构参数存在明显的差异.水浴30d 试件组的 $\tau_{t}$ 和 $G_{t}$ ( $G'_{t}$ )值都远高于其他试件组,具体来



Fig. 5 Bond-slip constitutive curves for interfaces between CFRP and steel

表 3 CFRP/钢界面黏结滑移本构参数的比较 Table 3 Comparison of the bond slip constitutive parameters of CFRP/ steel interface

| Parameter   | $	au_{ m f}/$ MPa | $\delta_{ m f}/$ mm | $K/(MPa \cdot mm^{-1})$ | G₁/(MPa•<br>mm) | G¦∕(MPa∙<br>mm) |
|-------------|-------------------|---------------------|-------------------------|-----------------|-----------------|
| 25 °CSika30 | 12.9              | 0.215               | 64.100                  | 1.935           | 1.387           |
| 70 ℃-30 d   | 35.0              | 0.275               | 136.392                 | 5.980           | 4.810           |
| 70 ℃-60 d   | 17.0              | 0.120               | 146.665                 | 2.210           | 1.020           |
| 70 ℃-90 d   | 11.5              | 0.180               | 65.000                  | 0.984           | 1.035           |

说,其τ<sub>f</sub>值是其他试件组的2.05~3.04倍,G<sub>f</sub>值为2.36~5.3倍,G<sub>f</sub>值为3.46~4.72倍.

#### 2.5 CFRP/钢界面极限承载力模型

Xia等<sup>[21]</sup>通过大量试验数据,提出了CFRP/钢双 搭接试件极限抗剪承载力(P<sub>ut</sub>)计算模型.

$$P_{\rm ult} = 2b_{\rm p} \sqrt{2G_{\rm f}E_{\rm p}t_{\rm p}} \tag{4}$$

其中, $G_{\rm f}$ 满足经验值(即 $G_{\rm f}=0.5\tau_{\rm f}\delta_{\rm f}$ ),故有:

$$P_{\rm ult} = 2b_{\rm p}\sqrt{\tau_{\rm f}\delta_{\rm f}E_{\rm p}t_{\rm p}} \tag{5}$$

式中: $b_p$ 为 CFRP 板宽度. Xia 等<sup>[21]</sup>建议 $\tau_f = 0.8\tau_a(\tau_a)$ 为黏结剂的拉伸极限强度).本文认为 $\tau_f = \tau_a$ 之间的关系可能受 CFRP/钢结构服役的环境影响,因此,在 Xia模型的基础上, $\tau_f$ 和 G<sub>I</sub>取实测值;CFRP/钢试件的极限荷载受 CFRP 板与钢板刚度差的影响,故引入 一个变量 $\beta$ 将此模型进一步扩展为 Xia-A,式(5)变形为式(6). $\beta$ 为 CFRP 板 与钢板刚度比,即  $t_p b_p E_p/0.5t_s b_s E_s, t_s, b_s, E_s$ 分别为钢板的厚度、宽度和 弹性模量.

$$P_{\rm ult} = 2b_{\rm p}\sqrt{\tau_{\rm f}\delta_{\rm f}E_{\rm p}t_{\rm p}(1+\beta)} \tag{6}$$

将 Xia 模型和 Xia-A 模型计算的各组极限承载 力与实测极限承载力进行对比,结果如表4所示.

|         | 表4 CFRP/钢界面极限承载能力理论计算结果                                                               |
|---------|---------------------------------------------------------------------------------------|
| Table 4 | Theoretical calculation results of ultimate bearing capacity of CFRP/ steel interface |

| Specimen group | Test/kN | Xia model/kN | Xia model/Test | Xia model-A/kN | Xia model-A/Test |
|----------------|---------|--------------|----------------|----------------|------------------|
| 25 °CSika30    | 111.76  | 89.68        | 0.80           | 90.21          | 0.81             |
| 70 ℃-30 d      | 129.78  | 146.58       | 1.13           | 148.04         | 1.15             |
| 70 ℃-60 d      | 78.88   | 67.86        | 0.86           | 77.36          | 0.98             |
| 70 ℃-90 d      | 71.84   | 68.34        | 0.95           | 77.92          | 1.08             |

如表4所示,由Xia模型和Xia-A模型计算的 各组极限承载能力较接近,并且与实测数据的偏 差在可接受的范围内,再次验证 $G_{f}$ 取 0.5 $\tau_{f}\delta_{f}$ 是可 行的.

综上所述,CFRP/钢试件的界面退化程度会随 水浴时间的延长而加剧,同时失效模式也会随之变 化.具体来说,水浴初期(0~30 d),黏结剂的后固化 和界面退化现象并存,但后固化作用更为显著,从而 提升了试件的极限承载力.此时的界面失效主要是 由于黏结剂强度以及碳纤维束之间的黏结力不足. 进入水浴中期(30~60 d),界面退化进一步加剧,后 固化作用减弱或提升效果远不及退化速度,CFRP/ 钢试件的界面退化程度较初期更为严重.随着水浴 时间的延长,水分子逐渐渗透进CFRP板材中,导致 碳纤维束之间的黏结剂强度也逐渐退化.在此阶段, 碳纤维束黏结剂强度的不足成为导致CFRP/钢试件 界面失效的主要因素.到了水浴后期(60~90d),碳 纤维束之间的黏结剂强度退化更为严重,而界面黏 结剂的退化则趋于稳定.由于界面黏结剂的强度大 于碳纤维束之间的黏结剂强度,因此碳纤维束之间 的黏结力不足最终导致了 CFRP/钢试件的界面 失效.

# 3 结论

(1)极端湿热环境的时长对CFRP/钢双搭接试件的破坏模式影响较小,但对其界面抗剪承载力影 响较大.试件平均抗剪强度从大到小的依次为9.52、 7.32、7.21、6.96 MPa,对应的试件分别为70℃-30 d、 25℃ sika30、70℃-60 d和70℃-90 d.

(2)在极端湿热环境下,CFRP/钢界面的黏结滑 移本构关系随着水浴时间的延长而变化.水浴 30 d 试件组的峰值剪应力、极限滑移量、峰值剪应力对应 的滑移量最大,并且随着水浴时间的增长,试件的峰 值剪应力、极限滑移量有减小的趋势.

(3)在极端湿热环境下的CFRP/钢界面的抗剪 承载力可采用Xia模型或Xia-A模型来计算.

#### 参考文献:

- [1] 庄宁,夏浩瑜,董洪汉,等.海洋环境中CFRP钢管混凝土复合 桩基腐蚀试验研究[J].建筑材料学报,2022,25(12):1262-1268.
   ZHUANG Ning, XIA Haoyu, DONG Honghan, et al. Corrosion test of CFRP concrete filled steel tube composite pile foundation in Marine environment [J]. Journal of Building Materials, 2022, 25(12):1262-1268.(in Chinese)
- [2] BAIY, NGUYEN T C, ZHAO X L, et al. Environment-assisted degradation of the bond between steel and carbon-fiber-reinforced

polymer[J]. Journal of Materials in Civil Engineering, 2014,26
(9):4014054.

- [3] 何媛媛,武丽,董江峰,等.CFRP加固对冻融再生混凝土短柱 承载能力的影响[J].建筑材料学报,2019,22(3):451-458.
   HE Yuanyuan, WU Li, DONG Jiangfeng, et al. Effect of CFRP strengthening on load bearing capacity of freeze-thaw recycled concrete short columns [J]. Journal of Building Materials, 2019, 22(3):451-458. (in Chinese)
- [4] 谢剑,乔羽,王启辰.极地低温下CFRP筋与混凝土的黏结性 能[J].建筑材料学报,2021,24(3):533-537.
   XIE Jian, QIAO Yu, WANG Qichen. Bonding behavior between of CFRP bar and concrete at polar temperature [J]. Journal of Building Materials, 2021,24(3):533-537. (in Chinese)
- [5] 柯璐,朱夫瑞,李传习,等.CFRP板-钢黏结界面的疲劳性能
   [J].建筑材料学报,2023,26(3):266-274.
   KE Lu, ZHU Furui, LI Chuanxi, et al. Fatigue properties of CFRP plate-steel bonding interface [J]. Journal of Building Materials, 2023,26(3):266-274. (in Chinese)
- [6] 李传习,柯璐,陈卓异,等.CFRP-钢界面粘结性能试验与数 值模拟[J].复合材料学报,2018,35(12):3534-3546.
  LI Chuanxi, KE Lu, CHEN Zhuoyi, et al Experimental and numerical simulation of CFRP steel interface bonding performance
  [J] Acta Materiae Compositae Sinica, 2018,35 (12):3534-3546.
  (in Chinese)
- [7] Al-MOSAWE A, Al-MAHAIDI R, ZHAO X. Effect of CFRP properties, on the bond characteristics between steel and CFRP laminate under quasi-static loading[J]. Construction and Building Materials, 2015, 98:489-501.
- [8] AROUCHE M M, BUDHE S, ALVES L A, et al. Effect of moisture on the adhesion of CFRP-to-steel bonded joints using peel tests [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018,40:1-8.
- [9] KORTA J, MLYNIEC A, UHL T. Experimental and numerical study on the effect of humidity-temperature cycling on structural multi-material adhesive joints [J]. Composites Part B: Engineering, 2015, 79:621-630.
- [10] 李传习,李游,贺君,等.固化剂对室温胶黏CFRP板/钢板界 面性能的影响[J].建筑材料学报,2021,24(2):339-347.
  LI Chuanxi, LI You, HE Jun, et al. Effect of curing agent on interfacial properties of room temperature bonded CFRP plate/ steel plate [J]. Journal of Building Materials, 2021,24(2): 339-347. (in Chinese)
- [11] 朱德举,姚明侠,张怀安,等.动态拉伸荷载下温度对CFRP/ 钢板单搭接剪切接头力学性能的影响[J].土木工程学报,2016, 49(8):28-35.

ZHU Deju, YAO Mingxia, ZHANG Huaian, et al. Effect of

temperature on mechanical properties of CFRP/ Steel plate single lap shear joint under dynamic tensile load [J]. China Civil Engineering Journal, 2016,49(8):28-35. (in Chinese)

- [12] HESHMATI M, HAGHANI R, AI-EMRANI M. Durability of bonded FRP-to-steel joints: Effects of moisture, de-icing salt solution, temperature and FRP type[J]. Composites Part B: Engineering, 2017, 119:153-167.
- [13] NGUYEN T C, BAI Y, ZHAO X L, et al. Durability of steel/ CFRP double strap joints exposed to sea water, cyclic temperature and humidity[J]. Composite Structures, 2012,94(5): 1834-1845.
- [14] GUO D, LIU Y L, GAO W Y, et al. Bond behavior of CFRP-to-steel bonded joints at different service temperatures: Experimental studyand FE modeling [J]. Construction and Building Materials, 2023, 362:129836.
- [15] LI Y, MA X W, LI H Y, et al. Effect of moisture-heat coupling on mechanical behavior of nano-SiO<sub>2</sub> adhesives and CFRP-steel lapjoints[J]. Thin-Walled Structures, 2023,183:110391.
- [16] DAWOOD M, RIZKALLA S. Environmental durability of a CFRP system for strengthening steel structures[J]. Construction and Building Materials, 2010,24(9):1682-1689.
- [17] KE L, LI C X, LUO N H, et al. Enhanced comprehensive performance of bonding interface between CFRP and steel by a novel film adhesive [J]. Composite Structures, 2019, 229: 111393.
- [18] ZHOU H, TORRES J P, FERNANDO D, et al. The bond behaviour of CFRP-to-steel bonded joints with varying bond properties at elevated temperatures[J]. Engineering Structures, 2019,183:1121-1133.
- [19] 陈卓异,彭彦泽,李传习,等.高温下双搭接钢-CFRP板 胶粘界面力学性能试验[J].复合材料学报,2021,38(2): 449-460.

CHENG Zhuoyi, PENG Yanze, LI Chuanxi, et al. Experimental study on the mechanical properties of the adhesive interface of double lapped steel CFRP plate at high temperature [J] Acta Materiae Compositae Sinica, 2021, 38 (2):449-460. (in Chinese)

- [20] HESHMATI M, HAGHANI R, Al-EMRANI M. Effects of moisture on the long-term performance of adhesively bonded FRP/steel joints used in bridges [J]. Composites Part B: Engineering, 2016, 92:447-462.
- [21] XIA S H, TENG J. Behaviour of FRP-to-steel bonded joints [C]// International Symposium on Bond Behaviour of FRP in Structures. Hong Kong: Hong Kong University Press, 2005: 411-418.