**文章编号:**1007-9629(2023)07-0809-08

## 聚乙烯醇纤维和碳纳米管改性对混凝土 力学性能的影响

徐阳晨, 邢国华\*, 黄 娇, 吴欣宇, 陆勇健

(长安大学建筑工程学院,陕西西安 710061)

摘要:为研究聚乙烯醇(PVA)纤维和碳纳米管(CNTs)对混凝土力学性能的影响,制备了不同PVA 纤维和CNTs掺量的混凝土试件来进行抗压、劈裂抗拉以及抗折试验,并通过数字图像相关(DIC) 技术对试件在抗折试验下的裂缝扩展进行了全过程监测.结果表明:当PVA纤维体积分数和CNTs 质量分数均为0.15%时,混凝土试件的力学性能最优;DIC应变云图直观展示了混凝土试件在抗折 试验过程中的裂缝扩展,可以对裂缝的位置以及发育方向进行准确地判别;PVA纤维和CNTs通过 桥接作用延缓了水泥基体中微裂缝的发展,改善了混凝土的微观结构,表现出正混杂效应. 关键词:混凝土;聚乙烯醇纤维;碳纳米管;力学性能;数字图像相关技术;微观结构 中图分类号:TU528.01 文献标志码:A doi:10.3969/j.issn.1007-9629.2023.07.014

### Effect of PVA Fiber and Carbon Nanotubes Modification on Mechanical Properties of Concrete

XU Yangchen, XING Guohua<sup>\*</sup>, HUANG Jiao, WU Xinyu, LU Yongjian (School of Civil Engineering, Chang'an University, Xi'an 710061, China)

**Abstract:** To study the effect of polyvinyl alcohol(PVA) fiber and carbon nanotubes(CNTs) on the mechanical properties of concrete, the concrete specimens reinforced with different content of PVA fiber and CNTs were prepared for compressive, splitting tensile and flexural tests, and the crack propagation of specimens under the flexural test was monitored by digital image correlation (DIC) technology. The results show that 0.15% PVA fiber and 0.15% CNTs can make concrete specimen obtain the best mechanical properties. DIC strain nephogram visually describes the crack propagation of specimen during the flexural test, which can be applied to judge accurately the crack location and development direction. PVA fibers and CNTs delay the propagation of microcracks and improve the microstructure of concrete by bridging microcracks in cement matrix, exhibiting a positive hybrid effect.

**Key words:** concrete; polyvinyl alcohol fiber; carbon nanotube; mechanical property; digital image correlation (DIC); microstructure

混凝土在服役过程中容易产生裂缝,从而影响 其力学和耐久性能<sup>[1]</sup>.研究表明<sup>[2]</sup>,在混凝土中掺入纤 维是抑制其裂缝产生和扩展的一种有效方法.

近年来,碳纳米管(CNTs)由于其优异的力学性能,逐渐成为研究的热点.研究发现<sup>[34]</sup>,CNTs既能发

挥纳米材料的微填充作用,增加混凝土的密实度,又能 充当微纤维,发挥桥接作用,抑制了混凝土微裂缝的扩 展和产生.聚乙烯醇(PVA)纤维是一种人工合成纤维, 具有较高的抗拉强度和弹性模量.PVA纤维的掺入可 以提高混凝土的力学和耐久性能,同时与其他纤维相

基金项目:国家自然科学基金资助项目(52178106);陕西省杰出青年基金资助项目(2021JC-26)

收稿日期:2022-08-11;修订日期:2022-10-12

第一作者:徐阳晨(1996—),男,河南周口人,长安大学博士生.E-mail: 2020028014@chd.edu.cn

通讯作者:邢国华(1983—),男,内蒙古呼和浩特人,长安大学教授,博士生导师,博士.E-mail:ghxing@chd.edu.cn

比,PVA纤维对混凝土的裂缝控制更有优势<sup>[5]</sup>.若将 PVA纤维和CNTs混杂掺入,则可以同时抑制混凝土 的微观和宏观裂缝.Sindu等<sup>66</sup>研究表明,同时掺入 PVA纤维和CNTs有效地桥接了水泥基复合材料的 多尺度裂缝,抑制了裂缝的扩展.Cheng等<sup>[7]</sup>研究发现, PVA纤维和CNTs的掺入使复合材料具有优异的裂 缝控制能力.此外,PVA纤维与水泥基体之间有更好 的相容性和黏结力<sup>[8]</sup>,而CNTs的存在可以增强这种黏 结力,进而增强PVA纤维对混凝土裂缝的控制.

基于此,本文采用PVA纤维和CNTs作为增强 材料,制备PVA纤维及CNTs增强混凝土复合材料, 通过抗压、劈裂抗拉及抗折试验来研究单掺和复掺 PVA/CNTs对混凝土力学性能的影响,以期能充分 发挥PVA纤维与CNTs在宏观和微观尺度上抑制混 凝土裂缝发展中的互补作用.同时,采用3D数字图 像相关技术(DIC)对混凝土试件在抗折试验过程中 裂缝的分布以及扩展过程进行实时监测.此外,通过 扫描电镜(SEM)观察PVA纤维和CNTs增强混凝 土的微观结构,继而探讨PVA纤维和CNTs对混凝 土的增强机制.

#### 试验 1

#### 1.1 原材料

水泥采用安徽海螺水泥有限公司生产的 P·O 42.5普通硅酸盐水泥,比表面积为1.439 m²/g,密度 为3120 kg/m<sup>3</sup>,化学组成(质量分数,文中涉及的 组成、减水率除特别说明外均为质量分数)如表1 所示.细集料采用河砂,表观密度为2580 kg/m<sup>3</sup>, 细度模数为2.8.粗集料为连续级配的碎石(CAs), 粒径为5~20 mm.CNTs为中国科学院成都有机化 工有限公司生产的羧基化多壁碳纳米管,主要性能 参数如表2所示. PVA纤维购自可乐丽上海某公 司,物理性能如表3所示.减水剂采用减水率为 30%的粉末状聚羧酸高效减水剂(SP).水采用普 诵自来水.

表1 水泥的化学组成 Table 1 Chemical composition of cement

|      |                  |                             |                 |                             |     | w/% |
|------|------------------|-----------------------------|-----------------|-----------------------------|-----|-----|
| CaO  | $\mathrm{SiO}_2$ | $\mathrm{Al}_2\mathrm{O}_3$ | $\mathrm{SO}_3$ | $\mathrm{Fe}_2\mathrm{O}_3$ | MgO | IL  |
| 63.8 | 20.6             | 4.5                         | 2.7             | 2.3                         | 2.2 | 1.6 |

表2 CNTs的主要性能参数 
 Table 2
 Main performance parameters of CNTs

| Di                                                                | ameter/nm                                                   | Length/µm Purity(by mass)/% |                       | ass)/% Speci         | fic surface area/ $(m^2 \cdot g^{-1})$ | True density/( $g \cdot cm^{-3}$ ) | w(-COOH)/% |  |  |
|-------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------|-----------------------|----------------------|----------------------------------------|------------------------------------|------------|--|--|
|                                                                   | 10-30                                                       | 10-30                       | 10-30 95              |                      | 110                                    | 2.1                                | 1.55       |  |  |
|                                                                   | 表 3 PVA 纤维的物理性能<br>Table 3 Physical properties of PVA fiber |                             |                       |                      |                                        |                                    |            |  |  |
| Length/mm Diameter/mm Density/(g·cm <sup>-3</sup> ) Tensile stren |                                                             |                             |                       | ) Tensile strength/M | Pa Elastic modulus/GPa                 | Elongation / %                     |            |  |  |
|                                                                   | 12                                                          | 0.                          | 04                    | 1.3                  | 1 560                                  | 41                                 | 6.5        |  |  |
| 1.2                                                               | 配合比设计                                                       | ŀ                           | CNTs对混凝土力学性能的影响(见表4). |                      |                                        |                                    |            |  |  |

本试验参考以往的研究<sup>[9]</sup>,分别制备了单掺 PVA纤维和CNTs的增强混凝土,然后保持CNTs 掺量不变,改变PVA纤维的掺量来研究复掺PVA/

#### 1.3 试样制备

由于碳纳米管很难均匀的分布在水泥基复合材 料中,导致不能发挥其增强功能.文献[10]表明羧基

Table 4 Mix proportions of concretes Mix proportion/(kg  $\cdot$  m<sup>-3</sup>) w(SP)/%w(CNTs)/%  $\varphi(PVA)/\frac{0}{0}$ Specimen No. Cement Sand CAs Water C0469 610  $1\ 183$ 188 0.15 0 0 P15 610 1 183 0.15 0 0.15 469 188 C15 469 610 1 183 0.15 0.15 188 0 CP5 469 610 1 183 188 0.150.150.05 CP10 469 610 1 183 188 0.15 0.15 0.10 CP15 469 610 1 183 188 0.15 0.15 0.15 CP20 610 1 183 0.15 0.20 469 188 0.15 CP25 469 610 1 183 188 0.15 0.15 0.25

表4 混凝土的配合比

官能团有助于碳纳米管的分散,而与聚羧酸减水剂 一起使用时也可以在一定程度上分散CNTs<sup>[11]</sup>.因 此,本试验采用羧基化多壁碳纳米管,并在试样制备 过程中,首先将CNTs和聚羧酸减水剂混合到水中, 使用高速电动搅拌机机械搅拌10min,制备成分散均 匀的CNTs悬浮液;然后,将水泥、砂、碎石依次倒入 搅拌机中搅拌1min;最后,将CNTs悬浮液倒入搅拌机 中缆续干拌1min;最后,将CNTs悬浮液倒入搅拌机 中搅拌3min.搅拌完成后将新拌混凝土倒入已刷油 的模具中,放在振动台上振实以消除气泡对试样的 影响.之后将试样放置于25℃的室内,并且用塑料膜 覆盖以防止其表面水分蒸发,24h后脱模.脱模后的 试样将在水中进一步养护至28d.

#### 1.4 试验方法

新拌混凝土的坍落度试验参照 GB/T 50080— 2016《普通混凝土拌合物性能试验方法标准》进行. 混凝土抗压强度、劈裂抗拉强度和抗折强度试验均 参照 GB/T 50081—2019《混凝土物理力学性能试验 方法标准》进行.抗压强度和劈裂抗拉强度试验采用 尺寸为100 mm的立方体试件,抗折强度试验采用尺 寸为100 mm×100 mm×400 mm的棱柱体试件,每 组试验准备3个平行试件,结果取其平均值.

采用WAW-31000型万能试验机对混凝土试件 进行抗压、劈裂抗拉和抗折试验.其中:抗压和劈裂 抗拉试验的加载方式采用力控制,加载速率分别为 0.5 MPa/s和0.05 MPa/s;抗折试验采用位移加载 方式,加载速率为0.05 mm/min.同时,利用3D DIC 对抗折试验中试件的裂缝发展过程进行全程观测.

#### 2 结果与讨论

#### 2.1 坍落度

表5为PVA纤维和CNTs对混凝土坍落度的影响.由表5可知:

(1)单掺 PVA 纤维略微降低了混凝土的坍落 度,单掺 CNTs则显著降低了混凝土的坍落度.这是 因为 CNTs 的尺寸达到纳米级,具有较大的比表面 积,可以吸附更多的水,增大了混凝土的需水量,从 而使新拌混凝土的坍落度降低.

(2)复掺 PVA/CNTs时混凝土的坍落度低于单 掺 PVA纤维和 CNTs 混凝土的坍落度,且随着 PVA 纤维掺量的增加,混凝土的坍落度逐渐降低.这是因 为 PVA 纤维会互相搭接形成"网络结构",阻碍了新 拌混凝土的流动.随着 PVA 纤维掺量的增加,这种 "网络结构"逐渐增多,降低了混凝土的流动性<sup>[12]</sup>.

表 5 各组混凝土的坍落度 Table 5 Concrete slump of each group

| Specimen<br>No. | Slump/<br>mm | Growth<br>rate/% | Specimen<br>No. | Slump/<br>mm | Growth<br>rate/% |
|-----------------|--------------|------------------|-----------------|--------------|------------------|
| C0              | 174          |                  | CP10            | 107          | -38.51           |
| P15             | 155          | -10.92           | CP15            | 100          | -42.53           |
| C15             | 122          | -29.89           | CP20            | 89           | -48.85           |
| CP5             | 115          | -33.91           | CP25            | 81           | -53.45           |

#### 2.2 PVA 纤维和 CNTs 对混凝土力学性能的影响

#### 2.2.1 抗压强度和劈裂抗拉强度

PVA纤维和CNTs对混凝土强度的影响如表6 所示.由表6可见:

| Table 6         Compressive and splitting tensile strength of concrete |                              |                                        |                                    |                                                |  |  |  |
|------------------------------------------------------------------------|------------------------------|----------------------------------------|------------------------------------|------------------------------------------------|--|--|--|
| Specimen No.                                                           | Compressive strength/<br>MPa | Growth rate of compressive strength/ ½ | Splitting tensile strength/<br>MPa | Growth rate of splitting tensile<br>strength/% |  |  |  |
| C0                                                                     | 43.08                        |                                        | 3.10                               |                                                |  |  |  |
| P15                                                                    | 44.62                        | 3. 58                                  | 4.13                               | 33.23                                          |  |  |  |
| C15                                                                    | 45.37                        | 5.32                                   | 4.01                               | 29.35                                          |  |  |  |
| CP5                                                                    | 47.37                        | 9.96                                   | 4.05                               | 30.65                                          |  |  |  |
| CP10                                                                   | 47.01                        | 9.12                                   | 4.10                               | 32.26                                          |  |  |  |
| CP15                                                                   | 46.80                        | 8.64                                   | 4.25                               | 37.10                                          |  |  |  |
| CP20                                                                   | 46.46                        | 7.85                                   | 4.32                               | 39.35                                          |  |  |  |
| CP25                                                                   | 43.03                        | -0.12                                  | 3.86                               | 24.52                                          |  |  |  |

表6 混凝土的抗压和劈裂抗拉强度

(1)单掺 PVA 纤维和 CNTs 均可提高混凝土的 抗压强度.复掺 PVA/CNTs 后,混凝土的抗压强度 较单掺时有所提高,当 PVA 纤维掺量为 0.05% 时强 度达到最大值.继续增大 PVA 纤维的掺量,混凝土 的抗压强度逐渐降低.当 PVA 纤维掺量为 0.20% 时,混凝土的抗压强度甚至低于对照组. (2)相比于抗压强度,PVA纤维和CNTs对混凝 土劈裂抗拉强度的提升效果更为显著.与试件CO相 比,试件P15和C15的劈裂抗拉强度分别提高了 33.23%和29.35%.复掺PVA/CNTs后,混凝土的 劈裂抗拉强度随着PVA纤维掺量的增加呈现出先 增大后降低的趋势.当PVA纤维掺量为0.20%时, 复掺 PVA/CNTs 混凝土的劈裂抗拉强度达到最大值,比对照组混凝土提高了 39.35%.

#### 2.2.2 抗折强度

表 7 为各组混凝土的 28 d 抗折强度,图 1 为混 凝土试件典型的荷载位移曲线.由表 7 和图 1 可见:

(1)单掺 PVA 纤维和 CNTs 也能显著提高混凝 土的抗折强度.与抗压强度、劈裂抗拉强度类似,复 掺 PVA/CNTs 混凝土的抗折强度优于单掺 PVA 纤 维和 CNTs 的混凝土,体现了 PVA 纤维和 CNTs 的 "正混杂效应".此外,复掺 PVA/CNTs 时,随着 PVA 纤维掺量的增加,混凝土的抗折强度先增大后降低. 与 试件 C0 相比,试件 CP5、CP10、CP15、CP20 和 CP25的抗折强度分别提高了14.80%、16.14%、 19.28%、16.82%和11.66%.当PVA纤维掺量为 0.15%时,混凝土的抗折强度取得最大值5.32 MPa. 当PVA纤维掺量超过0.15%后,混凝土的抗折强度 有所下降.

(2)所有试件在达到峰值荷载前均表现出近似的线性行为,并且在达到峰值荷载后曲线陡然下降,这与Sagar等<sup>[13]</sup>的研究结果类似.PVA纤维和CNTs的掺入增大了混凝土试件的峰值荷载和位移.试件CP15 的峰值荷载和位移分别为17.74 kN和0.712 mm,比试件C0高出了19.46%和33.83%,显示出良好的弯曲延性.

表 7 混凝土的 28 d 抗折强度 Table 7 28 d flexural strength of concrete

| Specimen No. | Flexural strength/MPa | Growth rate/% | Specimen No. | Flexural strength/MPa | Growth rate/% |  |
|--------------|-----------------------|---------------|--------------|-----------------------|---------------|--|
| CO           | 4.46                  |               | CP10         | 5.18                  | 16.14         |  |
| P15          | 5.16                  | 15.70         | CP15         | 5.32                  | 19.28         |  |
| C15          | 5.07                  | 13.68         | CP20         | 5.21                  | 16.82         |  |
| CP5          | 5.12                  | 14.80         | CP25         | 4.98                  | 11.66         |  |
|              |                       |               |              |                       |               |  |



图 1 PVA纤维和CNTs增强混凝土的抗折荷载-位移曲线 Fig. 1 Flexural load-displacement curves of PVA fibers and CNTs reinforced concrete

#### 2.2.3 断裂能

荷载位移曲线下的面积代表了挠曲韧性,可用 于评估 PVA 纤维和 CNTs 增强混凝土的断裂能<sup>[14]</sup>. 对图 1的曲线进行积分可以得到单掺和复掺 PVA/ CNTs增强混凝土的断裂能(见图 2).由图 2可见:与 单掺 CNTs 相比,单掺 PVA 纤维显著提高了混凝土 的断裂能.复掺 PVA/CNTs 混凝土的断裂能随着 PVA 纤维掺量的增加而逐渐增大;相对于试件 C0, 试件 CP5、CP10、CP15、CP20和 CP25的断裂能分别 增加了29.41%、33.49%、37.58%、38.68%和 48.35%.对比分析单掺和复掺 PVA/CNTs 混凝土试 件的断裂能发现,PVA 纤维对混凝土断裂能的提高 发挥了重要的作用,这是因为 PVA 纤维的存在使得 混凝土中裂缝的扩展需要消耗更多的能量,进而增



图 2 单掺和复掺 PVA/CNTs 增强纤维混凝土的断裂能 Fig. 2 Fracture energy of reinforced concrete with single and composite PVA/CNTs

大了混凝土的断裂能[15].

#### 2.3 基于DIC的弯曲裂缝分析

为了探索 PVA 纤维和 CNTs 增强混凝土在弯曲 荷载作用下裂缝的发展规律,通过 DIC 图像处理,得 到了所有试件的损伤应变云图,即试件的裂缝开展 情况,如图 3 所示.由于所有试件的裂缝均在出现在 跨中位置,因此取试件的中段(试件长度的三分之 一)作为 DIC 图像.图像所处的 2 个阶段分别为 0.9 倍 的峰值荷载(0.9 P<sub>o</sub>)阶段和峰值荷载(P<sub>o</sub>)阶段.

由图 3 可见:在 0.9P,阶段,所有试件均表现出较小的应变,未有裂缝产生;在 P,阶段,不同的试件表



图 3 试件在不同荷载下的应变云图 Fig. 3 Strain cloud diagrams of specimens under different loads

现出不同的损伤应变,试件出现裂缝;试件CO的应 变带最宽,其高度贯穿了整个试件,表明试件此时已 经完全断裂;单掺CNTs试件C15的应变带较宽,垂 直高度达到试件高度的90%左右,表明试件在峰值 荷载时并未完全断裂.此外,无论是单掺PVA纤维 还是复掺PVA/CNTs,混凝土试件应变带的宽度和 高度均显著减小,并且在复掺PVA/CNTs时,随着 PVA纤维掺量的增大,试件应变带的宽度和高度逐 渐降低.但当PVA纤维掺量超过0.15%时,对试件 应变带的影响不大.对于一些肉眼难以观察的裂缝, 也能在DIC的应变云图中清晰的反映出来.例如,试 件CP15除了出现了1条应变较大的应变带,还有1 条应变较小的应变带,表明试件在峰值荷载时出现2 条裂缝.

通过 DIC 技术对 PVA 纤维和 CNTs 增强混凝 土抗折试验的全过程分析,清楚直观地展示了在不 同荷载作用下试件的裂缝发展过程.相比单掺 CNTs 混凝土试件,掺入 PVA 纤维后混凝土试件裂缝的高 度和宽度明显变小.复掺 PVA/CNTs 后,混凝土试 件在峰值荷载时的裂缝进一步减小,表明 PVA 纤维 和 CNTs 能有效控制混凝土裂缝的开展.

# 2.4 PVA 纤维和 CNTs 增强混凝土力学性能的综合 评估

PVA纤维和CNTs对混凝土力学性能的影响如图4所示.由图4可见:相比单掺PVA纤维,单掺

CNTs在提高混凝土的抗压强度方面更有优势,但在 提高混凝土劈裂抗拉和抗折强度方面不如PVA纤 维;复掺PVA/CNTs时,低掺量(0.05%和0.10%) 的PVA纤维更有利于提高混凝土的抗压强度;较高 掺量(0.15%和0.20%)的PVA纤维在提高混凝土的 劈裂抗拉和抗折强度方面效果显著;当掺量超过 0.20%时,PVA纤维的掺入整体降低了混凝土的力 学性能;当PVA纤维渗量为0.15%时,混凝土获得 了较为平衡的力学性能.



Fig. 4 Effect of PVA fiber and CNTs on mechanical properties of concrete

#### 2.5 PVA纤维和CNTs增强混凝土的微观结构

图 5 为混凝土的形貌.由图 5 可见:虽然 CNTs 能桥接和填充部分微裂缝,但在较大的裂缝之间没 有桥接物质可以阻碍其发展,裂缝的长度和宽度相 对较大(图 5(a)、(b));由于 PVA 纤维的存在,基体 内部的裂缝以微裂缝为主,但 PVA 纤维与基体之 间存在间隙(图 5(c));复掺 PVA/CNTs 后,基体内 部的微裂缝明显减少,且 PVA 纤维与基体之间紧 密结合,PVA 纤维桥接在裂缝的两侧,这可以有效 传递应力,降低裂缝尖端的应力集中,使裂缝两端 的水泥基体在PVA纤维的桥接作用下形成了黏连 结构,有效的限制了裂缝的发展(图5(d));PVA纤 维在水泥基体中相互搭接形成的三维网络结构也 可以有效抑制裂缝的扩展(图5(e));从图5(c)、 (d)中均可以观察到PVA纤维因脱黏滑移而留下 的纤维沟槽,这可以消耗部分断裂能;此外,部分 PVA纤维在桥接裂缝时被拔出(图5(f)),在被拔 出时与水泥基体之间形成的摩擦力会消耗一定的 能量,这也解释了PVA纤维增强混凝土试件断裂 能的提升.



(a) C15,×180

(b) C15,×25 000

(c) P15,×180



(d) CP15,×180





(f) CP15, after failure

(e) CP15,×200 图 5 混凝土的形貌 Fig. 5 Structure of concrete

#### 2.6 PVA纤维和CNTs对混凝土的增强机制

由上述试验结果可知,单掺CNTs能够显著提高混凝土的力学性能.这是因为CNTs的微填充效应可以填充水泥水化产物之间的孔隙,细化基体的孔结构,提高了水泥基体的密实度<sup>[16]</sup>.其次,在CNTs和水泥基体之间的界面上存在3种力,即范德华力、机械咬合力和化学黏结力.其中,化学黏结力对界面的性质起着关键的作用.由于CNTs中的-COOH基团与水化硅酸钙或Ca(OH)<sub>2</sub>中的-OH基团发生反应,增强了化学黏结力,从而改善了界面的微观结构<sup>[17]</sup>.此外,CNTs作为一种微纤维可以桥接混凝土内部的微裂缝,并抑制其扩展,增强了混凝土内部的薄弱部位,进而提高了混凝土的力学性能.与单掺CNTs类似,PVA纤维掺入后,混凝土的力学性能也得到了明显的提升.这是因为混凝土中乱向分布的

PVA纤维能够约束裂缝的发展,有助于提高混凝土的韧性和承载力.

复掺PVA/CNTs后,混凝土的力学性能优于分 别单掺PVA纤维和CNTs混凝土的力学性能.从图 5(d)可以看出,由于CNTs的存在,PVA纤维与水泥 基体之间的界面过渡区更加致密,这有助于发挥 PVA纤维的阻裂效应.同时,PVA纤维和CNTs具 有不同的弹性模量和不同的尺度,二者混杂能够在 混凝土裂缝发展的不同阶段和不同尺度上发挥桥接 作用,减少裂缝的萌发,并抑制其形成贯穿裂缝.此 外,在抗折试验中可以看到,复掺0.15%的PVA/ CNTs混凝土试件还出现了多条裂缝的现象,这是因 为PVA纤维在承受和传递荷载时,迫使主裂缝在跨 越纤维时衍生出更多的次生裂缝<sup>[18]</sup>.值得注意的是, PVA纤维的掺量过高时则会降低复掺PVA/CNTs 混凝土的强度,因此PVA纤维的掺量不能过大.

### 3 结论

(1)单掺聚乙烯醇(PVA)纤维和碳纳米管 (CNTs)显著提高了混凝土的抗压强度、劈裂抗拉强 度和抗折强度.复掺PVA/CNTs后进一步增强了混 凝土的力学性能,但增强效果并不明显.复掺时, 0.15%掺量的PVA纤维和CNTs增强混凝土具有较 为平衡的力学性能.

(2)单掺 PVA 纤维和 CNTs 均可以提高混凝土的断裂能, PVA 纤维对混凝土断裂能的提升效果更显著.复掺时,随着 PVA 纤维掺量的增大, 混凝土的断裂能逐渐增大.0.15% 质量分数的 CNTs 和 0.25% 体积分数的 PVA 纤维将混凝土的断裂能提高了48.35%.

(3)数字图像相关技术(DIC)清晰地表征了混凝 土试件在抗折试验过程中的裂缝扩展行为,对于肉眼 难以观察的微小裂缝,DIC也可以敏锐地捕捉,可将其 应用于监测纤维增强混凝土的裂缝位置及开展过程.

(4)CNTs通过填充、桥接水泥基体中的微裂缝 改善了普通混凝土的微观结构,增强了混凝土的力 学性能.复掺PVA纤维和CNTs可以在不同尺度上 桥接水泥基体中的裂缝,抑制裂缝的产生和扩展.此 外,CNTs的存在使得PVA纤维和水泥基体之间有 着更为致密的界面过渡区,进一步增强了二者之间 的界面黏结性能.PVA纤维掺入后与CNTs表现出 正混杂效应,宏观表现为混凝土力学性能的提高.

#### 参考文献:

- [1] ALSHAGHEL A, PARVEEN S, RANA S, et al. Effect of multiscale reinforcement on the mechanical properties and microstructure of microcrystalline cellulose-carbon nanotube reinforced cementitious composites [J]. Composites Part B: Engineering, 2018, 149:122-134.
- [2] 牛旭婧,朋改非,何杰,等.多尺度钢纤维组合与碳纳米管对RPC 力学性能影响[J].建筑材料学报,2020,23(1):216-223.
  NIU Xujing, PENG Gaifei, HE Jie, et al. Influence of multi-scale steel fiber combination and carbon nanotube on mechanical properties of reactive powder concrete [J]. Journal of Building Materials, 2020, 23(1):216-223. (in Chinese)
- [3] NOCHAIYA T, CHAIPANICH A. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials[J]. Applied Surface Science, 2011, 257 (6):1941-1945.
- WANG B M, HAN Y, LIU S. Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites
   [J]. Construction and Building Materials, 2013, 46:8-12.

- [5] WANG L, HE T S, ZHOU Y X, et al. The influence of fiber type and length on the cracking resistance, durability and pore structure of face slab concrete [J]. Construction and Building Materials, 2021, 282:122706.
- [6] SINDU B S, SASMAL S. On the development and studies of nano-and micro-fiber hybridized strain hardened cementitious composite[J]. Archives of Civil and Mechanical Engineering, 2019, 19(2):348-359.
- [7] CHENG Z J, LU Y Y, AN J P, et al. Multi-scale reinforcement of multi-walled carbon nanotubes/polyvinyl alcohol fibers on lightweight engineered geopolymer composites [J]. Journal of Building Engineering, 2022, 57:104889.
- [8] SANCHAYAN S, FOSTER S J. High temperature behaviour of hybrid steel-PVA fibre reinforced reactive powder concrete[J]. Materials and Structures, 2016, 49(3):769-782.
- [9] 郑冰森,陈嘉琪,施韬,等.多壁碳纳米管增强混凝土的断裂性 能[J]. 硅酸盐学报,2021,49(11):2502-2508.
  ZHENG Bingmiao, CHEN Jiaqi, SHI Tao, et al. Fracture properties of multi-walled carbon nanotubes reinforced concrete
  [J]. Journal of the Chinese Ceramic Society, 2021, 49(11): 2502-2508. (in Chinese)
- [10] ALREKABIS, CUNDY A B, LAMPROPOULOS A, et al. Mechanical performance of novel cement-based composites prepared with nano-fibres, and hybrid nano-and micro-fibres[J]. Composite Structures, 2017, 178:145-156.
- [11] NALON G H, RIBEIRO J C L, PEDROTI L G, et al. Residual piezoresistive properties of mortars containing carbon nanomaterials exposed to high temperatures [J]. Cement and Concrete Composites, 2021, 121:104104.
- [12] 张鹏,王磊,王娟,等. 纳米CaCO<sub>3</sub>和PVA纤维增强混凝土工作 性及力学性能的研究[J]. 混凝土与水泥制品, 2020(3):42-45, 54.
  ZHANG Peng, WANG Lei, WANG Juan, et al. Study on the workability and mechanical properties of nano-CaCO<sub>3</sub> and PVA fiber reinforced concrete [J]. China Concrete and Cement Products, 2020(3):42-45, 54. (in Chinese)
- [13] SAGAR B, SIVAKUMAR M V N. Compressive properties and analytical modelling for stress-strain curves of polyvinyl alcohol fiber reinforced concrete[J]. Construction and Building Materials, 2021, 291:123192.
- [14] RUAN Y F, HAN B G, YU X, et al. Carbon nanotubes reinforced reactive powder concrete [J]. Composites Part A: Applied Science and Manufacturing, 2018, 112:371-382.
- [15] YU J, ZHANG M, LI G Y, et al. Using nano-silica to improve mechanical and fracture properties of fiber-reinforced high-volume fly ash cement mortar[J]. Construction and Building Materials, 2020, 239:117853.
- [16] 牛萩涛,何嘉琦,傅强,等.碳纳米管对水泥基材料微观结构及 耐久性能的影响[J].硅酸盐学报,2020,48(5):705-717.
  NIU Ditao, HE Jiaqi, FU Qiang, et al. Effect of carbon nanotubes on microstructure and durability of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2020,48 (5):705-717. (in Chinese)