文章编号:1007-9629(2022)01-0001-07

基于水化进程的硬化水泥浆体电导率 动态计算模型

何丽^{1,2},陈庆^{1,2},蒋正武^{1,2,*}

(1.同济大学 材料科学与工程学院,上海 201804;

2. 同济大学 先进土木工程材料教育部重点实验室,上海 201804)

关键词:硬化水泥浆体;电导率;水化;动态计算模型 中图分类号:TU528.01 文献标志码:A

doi:10.3969/j.issn.1007-9629.2022.01.001

Hydration Based Dynamic Calculation Model for Electric Conductivity of Hardened Cement Paste

HE Li^{1,2}, CHEN Qing^{1,2}, JIANG Zhengwu^{1,2,*}

(1. School of Materials Science and Engineering, Tongji University, Shanghai 201804, China; 2. Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 201804, China)

Abstract: Based on the model of cement hydration, considering the dynamic evolution law of porosity and ion concentration of pore solution in the process of cement hydration, the relationship of water binder ratio, cement components with electric conductivity of hardened cement paste was established, and a dynamic calculation model for electric conductivity of hardened cement paste was proposed. The results show that the proposed model can calculate the electric conductivity of hardened cement paste at different ages and the overall calculation error is less than 10%, especially the calculation error of electric conductivity of hardened cement paste at different ages and the overall calculation error is less than 10%, especially the calculation age, the ion concentration of pore solution first increases and then stabilizes, while the porosity decreases continuously with time. The combined effect of the two causes makes the electric conductivity of hardened cement paste decrease with the increase of cement hydration age. With the increase of water-binder ratio, the ion concentration and electrical conductivity of pore solution decrease, but the conductivity of the hardened cement paste increase of porosity.

Key words: hardened cement paste; electric conductivity; hydration; dynamic calculation model

第一作者:何 丽(1995—),女,四川雅安人,同济大学硕士生.E-mail:1830619@tongji.edu.cn

通讯作者:蒋正武(1974—),男,安徽潜山人,同济大学教授,博士生导师,博士.E-mail:jzhw@tongji.edu.cn

收稿日期:2020-09-25;修订日期:2020-10-19

基金项目:"十三五"国家重点研发计划项目(2018YFC0705400);国家自然科学基金资助项目(52122808,52078381,51878496);中央高校基本科研业务费专项资金资助项目

水泥基材料的电导率受孔隙率、孔隙溶液饱和 度、孔隙溶液电导率等多因素的影响^[19].国内外学者 提出了许多电导率模型^[10-12],如:Neithalath等^[8,13]基 于非均相混合物导电特性与单个组分导电特性,建 立了非均匀混合物导电特性的Hanai-Bruggeman方 程;Liang等^[10]根据水泥基材料的孔径分布,建立了 水泥基材料的电导率模型.这些模型尽管考虑了多 种因素对水泥基材料电导率的影响,但孔隙溶液离 子浓度和孔隙率是动态演变的,与此相关的孔隙溶 液电导率和硬化水泥浆体电导率亦是时变的^[14-16].现 有电导率模型鲜有考虑溶液电导率和水泥基体电导 率的时变性,在评价水泥基材料电学性能的动态演 变过程方面有一定的局限性.

本文基于水泥水化进程,利用水化动力学、质量 守恒定律和电解质溶液导电理论,建立硬化水泥浆 体电导率的动态计算模型.该模型能反应水泥水化 过程中孔隙溶液离子浓度、孔隙溶液电导率、孔隙率 以及硬化水泥浆体电导率的动态变化,同时也能指 导水泥基材料电学性能调控设计,为水泥材料的电 测技术提供理论基础.

基于水化进程的硬化水泥浆体电导 率模型

1.1 硬化水泥浆体电导率基本模型

水泥水化过程中会发生可溶性盐溶解和硅酸盐 水化2种反应,均会导致水中出现大量游离的导电离 子,如Na⁺、K⁺、OH⁻、SO²⁻、Ca²⁺等,同时生成大量水 化硅酸钙(C-S-H)凝胶等水化产物,且随着水化反应 的持续进行,水泥浆体逐渐失去可塑性,并最终形成 由水化产物、孔隙溶液和空气组成的三相复合硬化 水泥浆体结构^[17-18].

复合材料电导率理论认为硬化水泥浆体的电导 率 σ_t 是由固相、液相、气相电导率组成,其计算 式^[11,19-20]为:

$$\sigma_{t} = \sum_{i=1}^{n} \left(\sigma_{i} \phi_{i} \beta_{i} \right) = \sigma_{s} \phi_{s} \beta_{s} + \sigma_{p} \phi_{p} \beta_{p} + \sigma_{g} \phi_{g} \beta_{g} \quad (1)$$

式中:n为硬化水泥浆体的组成相数; σ_i 、 ϕ_i 、 β_i 分别为 第i相的电导率、孔隙率、连通性系数;下标s、p、g分 别表示固相、液相、气相.

Rajabipour^{19]}研究表明,水泥基材料的液相电导 率为1~20 S/m,固相和气相电导率分别为10⁻⁹、 10⁻¹⁵ S/m.由于固相和气相电导率远小于液相电导率,因此可近似忽略固相和气相电导率对硬化水泥浆体电导率的影响,从而得到σ_i=σ_p^[19].

硬化水泥浆体的电导率由其孔隙溶液的电导率 和孔隙率决定,而孔隙溶液的电导率和孔隙率都与水 泥水化息息相关^[16].根据电解质导电理论,孔隙溶液电 导率σ。可表示为每种离子等效电导率的加权和^[21]:

$$\sigma_{\rm p} = \sum z_i c_i \lambda_i \tag{2}$$

式中: z_i 为离子的价态; c_i 为离子浓度,mol/L; λ_i 为离 子等效电导率,S·m²/mol.

由式(2)可知,孔隙溶液电导率与离子种类和浓 度相关.水泥水化反应过程中产生的离子会受到水 泥化学组分、水化程度、水胶比(m_w/m_B)的影响.史才 军等^[22]研究表明,水化后期水泥浆体孔隙溶液主要 是由K⁺、Na⁺、OH⁻和SO²⁻组成,Ca²⁺可忽略不计, 其中SO²⁻浓度($c(SO^{2-}_{4})$)可以通过K⁺、Na⁺的浓度 ($c(K^+),c(Na^+)$)进行估算^[23]:

 $c(SO_4^{2-}) = 0.06 \times [c(K^+) + c(Na^+)]^2$ (3) 由电荷守恒可知OH⁻的离子浓度 $c(OH^-) \mathfrak{H}^{[23]}$:

 $c(OH^{-}) = c(Na^{+}) + c(K^{+}) - 2c(SO_{4}^{2-})$ (4)

综上,可得水化后期硬化水泥浆体的电导 率σ_τ为:

 $\sigma_{\mathrm{t}} = \sigma_{\mathrm{p}} \phi_{\mathrm{p}} \beta_{\mathrm{p}} = \phi_{\mathrm{p}} \beta_{\mathrm{p}} \sum_{i} z_{i} c_{i} \lambda_{i} =$

 $\phi_{\mathrm{p}}\beta_{\mathrm{p}}[c(\mathrm{K}^{+})\lambda(\mathrm{K}^{+})+c(\mathrm{Na}^{+})\lambda(\mathrm{Na}^{+})+$

 $2c(SO_4^{--})\lambda(SO_4^{--})+c(OH^{--})\lambda(OH^{--})] (5)$ 式中: $\lambda(K^+),\lambda(Na^+),\lambda(SO_4^{--}),\lambda(OH^{--})$ 分别为K⁺, Na⁺,SO₄⁻⁻,OH⁻⁻的等效电导率.

忽略溶质对溶液体积的影响,孔隙溶液的孔隙 率 φ_p 与水胶比、水化程度相关^[24];离子等效电导率 λ 与离子浓度有关;离子浓度与材料的组成和水化程 度相关^[16].因此,基于水泥水化进程,通过原材料组成 计算水化后期的水化程度以及离子浓度即可计算出 硬化水泥浆浆体水化后期的电导率.

基于水化进程的孔隙率和孔隙溶液离子浓度 计算

采用 Tomosawa 模型模拟水泥的水化进程, 假 定水泥颗粒呈球形, 水泥水化过程可分为诱导期阶 段、相界面反应过程和扩散反应过程. 纯水泥的水化 动力学方程用式(6)表示^[25-26]:

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = \frac{3(S_{\rm w}/S_{\rm 0})\rho_{\rm w}C_{\rm wrfree}}{(\vartheta + w_{\rm g})\rho_{\rm e}r_{\rm 0}} \times \frac{1}{(\frac{1}{k_{\rm d}} - \frac{r_{\rm 0}}{D_{\rm e}}) + \frac{r_{\rm 0}}{D_{\rm e}}(1 - \alpha)^{-\frac{1}{3}} + \frac{1}{k_{\rm r}}(1 - \alpha)^{-\frac{2}{3}}}$$
(6)

式中: α为水泥水化度; t为水泥水化龄期, h; S_w为水

泥与水接触的有效表面积,g/cm²;S₀为无约束下的总

表面积,g/cm²; ρ_w 为水的密度,g/cm³; C_{w-free} 为C-S-H 凝胶外的自由水量; ρ_e 为水泥的密度,g/cm³; r_o 为未水 化水泥的半径,cm; ϑ 为水与水泥质量的化学计量比; w_g 为C-S-H凝胶结合水量; k_d 为诱导期反应系数, cm/h; k_r 为相界面反应系数,与温度有关,遵循 Arrhenius定律^[27-28],cm/h; D_e 为水通过凝胶的有效扩 散系数,cm²/h.

1.2.1 孔隙率的计算

忽略溶质对溶液体积的影响,基于水泥水化 进程,孔隙溶液的体积分数(即液相填充的孔隙率 φ_p)可由水的体积减去水化产物中结合水的体积 V_b得到^[24]:

$$\phi_{\rm p} = 100 \times m_{\rm w}/m_{\rm B} - V_{\rm b} = 100 \times m_{\rm w}/m_{\rm B} - 31.6\alpha$$
(7)

1.2.2 孔隙溶液离子浓度计算

硬化水泥浆体中 Na⁺、K⁺除分布在孔隙溶液, 还有部分与水化产物(C-S-H凝胶和水化硫铝酸钙 AFm)相结合.根据文献[24],溶液中 Na⁺、K⁺的质 量为 m_d ,水化产物中 Na⁺、K⁺的质量为 m_p , m_d 与 m_p 的和即为硬化水泥浆体 Na⁺、K⁺的总质量 $m_r^{[24]}$;假 设水泥基材料孔隙溶液是均质的,Na⁺、K⁺的浓度 为c、体积为V;假设 m_p 与溶液的浓度成正比.可得 Na⁺和K⁺的浓度c为:

$$c = \frac{m_{\rm d} + m_{\rm p}}{V + b \times \alpha} = \frac{m_{\rm r}}{V + b \times \alpha} \tag{8}$$

式中: b为"结合因子", Na⁺的结合因子为 31.0 cm³, K⁺的结合因子为 20.0 cm^{3[24]}.

假设所有水溶性碱都是以硫酸盐的形式存 在^[24],不同的水泥可溶性碱与总碱比例不同,根据文 献[16]对6种水泥的研究,得到水溶性碱占Na₂O、 K₂O的平均质量分数分别为53%、97%,那么水化产 物中非水溶性碱占Na₂O、K₂O的平均质量分数分别 为47%、3%,由此可得Na⁺和K⁺的浓度为:

$$c(Na^{+}) = \frac{m_{r}}{V + b \times \alpha} = \frac{0.53m(Na_{2}O) + 0.47\alpha m(Na_{2}O)}{100 \times m_{w}/m_{B} - 31.6\alpha + 31\alpha} \quad (9)$$

$$c(K^{+}) = \frac{m_{r}}{V + b \times \alpha} = \frac{0.97m(K_{2}O) + 0.03\alpha m(K_{2}O)}{100 \times m_{w}/m_{B} - 31.6\alpha + 20\alpha} \quad (10)$$

式中: $m(Na_2O)$ 、 $m(K_2O)$ 分别为水泥中 Na_2O 、 K_2O 的 质量,g.

由式(9)、(10)可知,Na⁺、K⁺的浓度与水泥组分 中Na₂O和K₂O的含量、水胶比、水化程度密切相关.

1.3 硬化水泥浆体电导率动态计算模型

硬化水泥浆体电导率的计算步骤为:首先,根据 水胶比、水泥密度和比表面积,通过式(6)计算出硬化 水泥浆体的水化程度;其次,根据水泥组成、水化程 度,通过式(3)、(4)、(7)、(9)和(10)计算孔隙溶液离子 浓度和液相填充的孔隙率;再利用孔隙溶液离子浓 度,通过式(2)计算出孔隙溶液电导率;最后,根据孔 隙溶液电导率和液相填充的孔隙率,通过式(5)计算 出硬化水泥浆体电导率,实现从原材料到硬化水泥浆 体电导率的动态计算.

2 硬化水泥浆体电导率动态计算模型 的验证

为检验硬化水泥浆体电导率动态计算模型的可 行性,本文对上述步骤进行逐一验证,验证结果及分 析见下文.

2.1 硬化水泥浆体水化程度

水泥的密度为 3.16 g/cm³, 勃氏比表面积为 3 450 cm²/g^[29], 通过计算可得硬化水泥浆体的水化 程度, 其试验结果^[29]与计算结果见图 1. 由图 1 可见: 水化龄期相同时, 硬化水泥浆体的水化程度随着水 胶比的增大而增大; 水胶比相同时, 水化程度随着龄 期的增长而不断地增大, 水化前 24 h水化速率最快; 水泥的水化速率与时间成负相关关系, 龄期越大水 化速率越小, 到 500 h时水化速率更为缓慢; 与试验 结果相比, 水化模型能较好地模拟水化程度随时间 的演化关系, 但 24 h内的水化程度计算结果与试验 结果差异较大; 水胶比为 0.30、0.40、0.50、0.60 的硬 化水泥浆体的水化程度模拟误差分别为 26%、23%、 25%、27%; 对龄期为 3、7 d的水泥硬化浆体的水化 程度拟合误差在 15% 以内, 而对龄期 28、91 d的拟合 误差在 5% 以内. 由此可见, 随着硬化水泥浆体水化

龄期的增长,该模型的计算误差越小.

2.2 硬化水泥浆体孔隙溶液离子浓度

普通硅酸盐水泥的化学组成(质量分数)见表 1^[29],不同水胶比下硬化水泥浆体孔隙溶液的离 子浓度见图 2. 由图 2 可知:孔隙溶液中离子浓度 排序为 $c(OH^-) > c(K^+) > c(Na^+) > c(SO_4^{--})$,各离 子浓度均随着水化龄期的增长而增大,且水化7 d后 基本稳定;OH⁻的浓度约为Na⁺、K⁺浓度的总和(见 图 2(a), $c(Na^+)$, $c(K^+)$, $c(OH^-)$ 分别为0.115 5、 0.256 8、0.355 4 mol/L, $c(OH^-)$ % $c(Na^+) + c(K^+)$); 在相同水化龄期下,随着水胶比的增大,孔隙溶液中 各离子浓度均呈下降趋势,这是因为硬化水泥浆体 水化龄期相同时,水化程度随着水胶比的增大而增 大,导致其所含离子物质的量增加,而水胶比的增大 也使溶剂水的体积增大,二者耦合作用使孔隙溶液 中K⁺、Na⁺、OH⁻、SO₄²⁻浓度降低.

2.3 硬化水泥浆体孔隙溶液的电导率

不同水胶比下硬化水泥浆体孔隙溶液的电导率 (σ_p)见图 3. 由图 3 可见:随着水化龄期的增长,硬化 水泥浆体孔隙溶液的电导率逐渐增大,但其增速减 缓;水化 3 d内,σ_p的增速较快,龄期达到 28 d时孔隙 溶液的电导率几乎保持不变;当水化龄期为 28 d时, 水胶比为 0.30、0.40、0.50、0.60的硬化水泥浆体孔隙 溶液电导率分别为 8.25、6.10、4.82、3.97 S/m,随着 水胶比的增大,孔隙溶液的电导率呈下降趋势,与孔 隙溶液离子浓度变化趋势一致.

2.4 硬化水泥浆体的电导率

硬化水泥浆体的孔隙率 φ_p、电导率 σ_t 及其计算 误差见表 2,其中 σ_t的试验值来自文献 [29].由表 2 可 见:硬化水泥浆体的电导率随着水化龄期的增长而 减小,这是因为在水化进行 7 d之后,硬化水泥浆体 孔隙溶液的离子浓度几乎不发生改变,孔隙溶液电

	表1 普通硅酸盐水泥的化学组成		
Table 1	Chemical composition of ordinary Portland cemen	t	

图 2 不同水胶比下硬化水泥浆体孔隙溶液的离子浓度 Fig. 2 Ion concentration of pore solution of hardened cement paste under different m_w/m_B

Fig. 3 Electric conductivity of pore solution of hardened cement paste under different m_w/m_B

导率变化较小,而随着水化龄期的增长,硬化水泥浆体的孔隙率逐渐降低^[30],这导致了硬化水泥浆体整体电导率的降低;硬化水泥浆体的电导率随着水胶比的增大而增大,这是因为水胶比增大,一方面使载流子的浓度降低,溶液的电导率下降,另一方面传输介质水和传输通道孔隙增加,有利于载流子的传输,导致其电导率增大,综合两者作用,其电导率随水胶比的增大而增大^[31-33].

由表2还可见:水胶比为0.40,龄期为91d时,计 算误差最大为10.00%;水胶比为0.60,龄期为28d

errors of nardened cement pastes						
$m_{ m w}/m_{ m B}$	Parameter	t/d				
		7	28	91		
0.40	$\phi_{ m p}/\sqrt[9]{0}$	15.2903	11.9795	10.2669		
	Test $\sigma_t/(\mathbf{S} \cdot \mathbf{m}^{-1})$	0.1286	0.1102	0.1102		
	Calculated $\sigma_t / (S \cdot m^{-1})$	0.1368	0.1118	0.0979		
	Calculated error/%	-7.79	-2.74	10.00		
0.50	$\phi_{ m p}/\%$	24.0607	20. 575 1	19.0474		
	Test $\sigma_t/(S \cdot m^{-1})$	0.1653	0.1469	0.1469		
	Calculated $\sigma_t / (S \cdot m^{-1})$	0.1709	0.1518	0.1429		
	Calculated error/%	-4.75	-4.67	1.48		
0.60	$\phi_{ m p}/\%$	33. 386 8	30.008 5	28.7664		
	Test $\sigma_t/(S \cdot m^{-1})$	0. 183 7	0. 183 7	0.1837		
	Calculated $\sigma_t / (S \cdot m^{-1})$	0.1964	0.1824	0.1770		
	Calculated error/%	-8.30	-0.63	2.36		

表 2 硬化水泥浆体孔隙率、电导率及其计算误差 Table 2 Electric conductivity, porosity and its simulation errors of bardoned compart postor

时,计算误差最小为0.63%;当龄期为28d或水胶比 为0.50时,计算误差均在5%以内.综上,硬化水泥浆 体电导率演化计算模型能较为准确地计算水化后期 (7d之后)硬化水泥浆体电导率的动态变化,其计算 误差在10%及以下.

为进一步验证模型的准确性,对文献[34-35]的 试验数据进行了验证,结果见表3.由表3可见,该模 型能准确计算出水化后期(7 d之后)硬化水泥浆体的 电导率,其计算误差亦在10%以内.

表 3 硬化水泥浆体电导率 Table 3 Electric conductivity of hardened cement pastes

	. / 1	$\sigma_{\rm t}/({ m S}$	$\sigma_{t}/(S \cdot m^{-1})$		
$m_{ m w}/m_{ m B}$	<i>l/</i> d	Test	Calculated		
	7	0.1300	0.1297		
0.30 ^[34]	14	0.1000	0.1023		
	21	0.0900	0.0876		
	7	0.1900	0.1917		
0.40 ^[34]	14	0.1700	0.1724		
	21	0.1500	0.1626		
	14	0.0410	0.0391		
0.55 ^[35]	28	0.0380	0.0374		
	90	0.0330	0.0357		
0.20	7	0.1102	0.1206		
0.30	28	0.0735	0.0722		

3 结论

(1)基于水泥水化进程,明确了硬化水泥浆体电 导率与水胶比、水泥组分、水化程度的关系,建立了 硬化水泥浆体电导率动态计算模型,该模型整体计 算误差在10%以内,其中对龄期为28d的硬化水泥 浆体电导率的计算误差小于5%.

(2)该模型能定量表征硬化水泥浆体孔隙溶液 离子浓度、孔隙溶液电导率、孔隙率以及硬化水泥浆 体电导率随水化龄期的动态变化.随着水化龄期的 增长,硬化水泥浆体孔隙溶液离子浓度增大,孔隙溶 液电导率也增大,孔隙率和硬化水泥浆体电导率 减小.

(3)该模型能定量表征水胶比对硬化水泥浆体 电导率的影响.随着水胶比增大,硬化水泥浆体孔隙 溶液离子浓度降低、电导率降低,同时液相填充的孔 隙率增大,导电传输介质水增加,有利于导电离子的 传输,硬化水泥浆体电导率增大.

参考文献:

- [1] MEDEIROS-JUNIOR R A, LIMA M G. Electrical resistivity of unsaturated concrete using different types of cement [J]. Construction and Building Materials, 2016, 107:11-16.
- [2] LIC, CHENQ, WANGRL, et al. Corrosion assessment of reinforced concrete structures exposed to chloride environments in underground tunnels: Theoretical insights and practical data interpretations[J]. Cement and Concrete Composites, 2020, 112: 103652.
- [3] WANG Y, GONG F Y, UEDA T, et al. Theoretical model for estimation of ice content of concrete by using electrical measurements[J]. Procedia Engineering, 2014, 95:366-375.
- [4] XIAO L Z, REN Z, SHI W C, et al. Experimental study on chloride permeability in concrete by non-contact electrical resistivity measurement and RCM[J]. Construction and Building Materials, 2016, 123:27-34.
- [5] DONG B Q, ZHANG J C, WANG Y S, et al. Evolutionary trace for early hydration of cement paste using electrical resistivity method [J]. Construction and Building Materials, 2016, 119: 16-20.
- [6] TAILLET E, LATASTE J F, RIVARD P, et al. Non-destructive evaluation of cracks in massive concrete using normal dc resistivity logging[J]. NDT&E International, 2014, 63(4):11-20.
- [7] GENG J, DING Q J, SUN B N, et al. Microstructural characteristics of concrete with high impedance and impermeability
 [J]. Journal of the Chinese Ceramic Society, 2010, 38(4): 638-643.
- [8] NEITHALATH N, WEISS J, OLEK J. Characterizing enhanced porosity concrete using electrical impedance to predict acoustic and hydraulic performance[J]. Cement and Concrete Research, 2006, 36(11):2074-2085.
- [9] SANISH K B, NEITHALATH N, SANTHANAM M. Monitoring the evolution of material structure in cement pastes and concretes using electrical property measurements [J]. Construction and Building Materials, 2013, 49:288-297.
- [10] LIANG K, ZENG X H, ZHOU X J, et al. A new model for the electrical conductivity of cement-based material by considering pore size distribution[J]. Magazine of Concrete Research, 2017, 69(20):1067-1078.
- [11] LI Q H, XU S L, ZENG Q. The effect of water saturation degree on the electrical properties of cement-based porous material[J]. Cement and Concrete Composites, 2016, 70:35-47.
- [12] NEITHALATH N. Extracting the performance predictors of enhanced porosity concretes from electrical conductivity spectra
 [J]. Cement and Concrete Research, 2007, 37(5):796-804.
- BUSSIAN A E. Electrical conductance in a porous medium[J].Geophysics, 1983, 48(9):1258-1268.
- [14] WANG X Y. Properties prediction of ultra high performance concrete using blended cement hydration model[J]. Construction and Building Materials, 2014, 64:1-10.

- [15] CHEN Q, WANG H, JIANG Z W, et al. Quantitative prediction method for hydration products of cement containing silica fume with low water to binder ratios[J]. Journal of Tongji University (Natural Science), 2019, 47(7):1031-1036.
- [16] MIGUEL Á S, ESTEBAN E, CRISTINA A. Alkali ion concentration estimations in cement paste pore solutions [J]. Applied Sciences, 2019, 9(5):992.
- [17] KUMAR P M, PAULO J M. Concrete microstructure, properties, and materials[M]. America: Prentice-Hall, 2013.
- [18] ZHU X P, QIAN C, HE B, et al. Experimental study on the stability of C-S-H nanostructures with varying bulk CaO/SiO₂ ratios under cryogenic attack[J]. Cement and Concrete Research, 2020, 135:106114.
- [19] RAJABIPOUR F. In situ electrical sensing and material health monitoring of concrete structures [D]. West Lafayette: Purdue University, 2006.
- [20] RAJABIPOUR F. Electrical conductivity of drying cement paste[J]. Materials and Structures, 2007, 40(10):1143-1160.
- [21] BOCKRIS J O M, REDDY A K N. Modern electrochemistry [M]. America: Plenum, 1970.
- [22] SHI C J. Effect of mixing proportions of concrete on its electrical conductivity and the rapid chloride permeability test (ASTM C1202 or ASSHTO T277) results[J]. Cement and Concrete Research, 2004, 34(3):537-545.
- [23] STRUBLE L J. The influence of cement pore solutionon alkali-silica reaction[D]. Purdue:Purdue University, 1987.
- [24] TAYLOR H. A method for predicting alkali ion concentrations in cement pore solutions [J]. Advances in Cement Research, 1987, 1(1):5-17.
- [25] PARK K B, NOGUCHI T, PLAWSKY J. Modeling of hydration reactions using neural networks to predict the average properties of cement paste[J]. Cement and Concrete Research, 2005, 35(9): 1676-1684.
- [26] TOMOSAWA F. Development of a kinetic model for hydration of cement[C]//Proceedings of the 10th International Congress on the Chemistry of Cement. Gothenburg: Harald Justnes Publisher, 1997:51-58.
- [27] CHEN Q, WANG H, JIANG Z W, et al. The hydration model of ultra-high performance cementitious materials based on the shrinking-core model[J]. Materials Reports, 2019, 33(8):65-69.
- [28] TOMOSAWA F, NOGUCHI T, HYEON C. Simulation model for temperature rise and evolution of thermal stress in concrete based on kinetic hydration model of cement[C]//Proceedings of the 10th International Congress Chemistry of Cement. Gothenburg:Harald Justnes Publisher, 1997.
- [29] KIYOFUMI K, TOYOHARU N. Electric conductivity and chloride ingress in hardened cement paste[J]. Journal of Advanced Concrete Technology, 2016, 14:87-94.
- [30] ZHANG Y, JIANG Z W, ZHU Y M, et al. Effects of redispersible polymer powders on the structural build-up of 3D printing cement paste with and without hydroxypropyl methylcellulose[J]. Construction and Building Materials, 2021, 267:120551.

- [31] HE B, XIE M J, JIANG Z W, et al. Temperature field distribution and microstructure of cement-based materials under cryogenic freeze-thaw cycles [J]. Construction and Building Materials, 2020, 243:118-256.
- [32] 李闯,范颖芳,李秋超.基于电化学阻抗谱的偏高岭土水泥性能研究[J].建筑材料学报,2020,23(4):755-762.
 LI Chuang, FAN Yingfang, LI Qiuchao. Performance of cement paste with metakaolin based on electrochemical impedance spectroscopy[J]. Journal of Building Materials, 2020, 23(4): 755-762. (in Chinese)
- [33] 陈克凡,乔宏霞,王鹏辉,等.氯氧镁水泥钢筋混凝土通电锈 蚀的断裂性能分析[J].建筑材料学报,2020,23(3):557-562.

CHEN Kefan, QIAO Hongxia, WANG Penghui, et al. Fracture behavior analysis of magnesium oxychloride cement reinforced concrete under electric corrosion [J]. Journal of Building Materials, 2020, 23(3):557-562. (in Chinese)

- [34] MANCHIRYAL R K, NEITHALATH N. Analysis of the influence of material parameters on electrical conductivity of cement pastes and concretes [J]. Magazine of Concrete Research, 2009, 61(4):257-270.
- [35] MCCARTER W J, STARRS G, CHRISP T M. Electrical conductivity, diffusion, and permeability of Portland cement-based mortars[J]. Cement and Concrete Research, 2000, 30(9):1395-1400.