摘要
水化硅酸钙(C‑S‑H)作为普通硅酸盐水泥的主要水化产物,其微纳结构的稳定性对水泥基材料的强度与耐久性具有显著影响.本文综述了C‑S‑H分子结构和胶体结构在近几十年来的主要研究进展,进一步概述了C‑S‑H在超低温环境下的微纳结构稳定性、纳米力学性质稳定性及增强策略的相关研究进展,探讨了目前超低温环境下C‑S‑H结构研究中存在的关键问题,并对未来进一步的研究方向提出展望.
自硅酸盐水泥发明200年以来,水泥混凝土不断向着高强度、高耐久性和功能性方向进行着技术革新.其在许多低温严寒工程中得到大规模使用,如中国哈大高速铁路和青藏铁路等,同时也被应用于液化天然气(LNG)储罐等超低温工程.LNG混凝土储罐的使用环境不仅长期处于-165 °C超低温下,还会反复经历超低温冻融循环,这给混凝土材料的服役安全带来了极大的挑
水化硅酸钙(C‑S‑H)是普通硅酸盐水泥的主要水化产物,其对水泥基材料的强度和耐久性有显著影响.在过去的几十年里,人们开展了大量的研究工作,以期揭示C‑S‑H的组分、微纳结构和力学性能之间的关系.本文详细总结了C‑S‑H分子结构和胶体结构在近几十年来的主要研究进展,并进一步概述了其在超低温环境下的稳定性及增强策略相关研究进展,以期为超低温下水泥基材料的开发应用提供一定的基础认知.
C‑S‑H的钙硅比n(Ca)/n(Si)在1.2~2.3之
根据托勃莫来石的层间间距dl及晶胞对称性,其主要存在3种类型,分别是层间间距为1.4、1.1、0.9 nm的托勃莫来

图1 托贝莫来石晶体结构
Fig.1 Crystalline structures of tobermotir
如前所述,C‑S‑H已广泛被认为是一种具有许多缺陷结构的类托勃莫来石.一般认为,这些缺陷主要是由硅氧链上部分桥接硅氧四面体单元缺失引起的,缺失处的硅氧四面体由C

图2 C‑S‑H硅氧链原子结构
Fig.2 Atomistic structure of C‑S‑H silicate chai
在复合水泥体系中,水化硅酸盐水泥的铝硅比n(Al)/n(Si)约为0.1,当使用富铝元素的辅助胶凝材料(如偏高岭土)时,该值可达0.

图3 C‑A‑S‑H 的交联和非交联结构
Fig.3 Crosslinked and non‑crosslinked structures of C‑A‑S‑H
关于C‑A‑S‑H的原子结构,有2个主要问题尚不清楚:(1)第1个问题是类托勃莫来石C‑S‑H链中铝原子取代硅原子的位置.通常,可能的取代发生在dreierketten链的

图4 C‑A‑S‑H内桥接及层间铝酸盐配合物原子结构
Fig.4 Atomistic representations of bridging and interlayer aluminates in C‑A‑S‑H
为定量描述C‑(A)‑S‑H的分子结构,随着测试技术及研究方法的不断发展,研究人员提出了许多C‑(A)‑S‑H的化学结构式模型,下文总结了四十几年来4个较为经典的模型.
1992年,Richardson
在实际情况中,C‑S‑H中的O
此外,考虑到在粉煤灰、矿粉等体系中,碱金属离子,尤其是A
考虑到在碱激发矿渣体系中生成的水化铝硅酸钙(钠)(C‑(N)‑A‑S‑H)产物,Myers
.其中:α为交联托勃莫来石中铝原子的取代率;δ为每个托勃莫来石单元的桥接位空位占比,δ=1/(σ+1);σ为每条链上交联托勃莫来石的数量;ω为托勃莫来石单元内层间钙的数量.
2015年Richardso
综上,可以用
表征交联和非交联C‑(A)‑S‑H的混合相结构.其中:d为双链占比,0≤d≤1.式(8)可以通
在描述含铝的C‑A‑S‑H结构时,以上结构化学式模型均不将位于层间的铝酸盐视为C‑A‑S‑H的一部分.基于此,Zhu
.其中:为主层dreierketten链;V为铝硅氧链的空位;为dreierketten链中O原子的平均数量;β、γ、μ分别为
C‑(A)‑S‑H的广义模型是基于C‑(A)‑S‑H砖块模型建立的,其表示含6个硅氧四面体/铝酸盐结构单元、4个主层钙和若干层间物质单个砖块结构的平均化学计量式.式(9)表示的 C‑A‑S‑H 原子结构信息更加丰富.
精细解构C‑(A)‑S‑H的分子结构有助于建立更加真实的分子计算模型.Kunhi

图5 C‑A‑S‑H砖块模型的DNA编码示例
Fig.5 Examples for the DNA‑code description of C‑A‑S‑H brick mode
C‑S‑H的化学结构式模型适用于阐述其分子组成及结构,无法直接解释水泥石强度的形成、C‑S‑H的孔径分布、比表面积及其收缩徐变、颗粒之间的作用力等问题.因此,许多研究者试图从胶体尺度上解析其结构及性能,并提出了相应的胶体结构模型.
P‑B胶体模型由Powers

图6 C‑S‑H的胶体结构模型
Fig.6 Colloidal structure models of C‑S‑H
Feldman
Munich模型由Wittman
Jenning

图7 胶体模型示意图
Fig.7 Schematic diagrams of colloidal models
C‑S‑H微纳结构的差异使得水泥基材料的宏微观性质表现各异,明显的案例是C‑S‑H在超低温作用下的稳定性问题.近年来研究发现C‑S‑H纳米结构的差异可对C‑S‑H的微纳结构和力学性质的超低温稳定性产生显著差别.
对于在低温或超低温环境下服役的水泥基材料而言,其微结构的劣化是很常见的现象.在超低温或低温冻融情况下,孔隙水的冻融对水泥基材料的劣化起着重要作用.然而,绝干状态的混凝土在超低温(低于-165 °C)循环下仍可发生一定程度的劣化.Zhu

图8 C‑(A)‑S‑H在超低温侵蚀下自下而上的多尺度劣化路径
Fig.8 Upscaling degradation pathway of C‑(A)‑S‑Hunder cryogenic attac
材料的微纳结构与力学性质密不可分,超低温侵蚀下C‑(A)‑S‑H微纳结构的变化将引起其力学性质的改变.为表征水泥基材料的本征纳米力学性质,Zhu
超低温侵蚀下普通C‑S‑H微纳结构劣化和纳米力学性质的退化似乎是不可避免

图9 C‑(A)‑S‑H基本胶粒单元在超低温侵蚀下的演变示意图
Fig.9 Schematic diagrams of evolution C‑(A)‑S‑H basic colloidal particle units under cryogenic attack
(1)水化硅酸钙(C‑S‑H)分子结构是复杂多样的,其硅氧链的缺陷、铝原子的掺杂及层间离子与水分子的差异使其分子结构难以准确确定.C‑(A)‑S‑H分子模型的DNA编码描述体现了这种多样性,这对C‑(A)‑S‑H真实分子模型的构建带来了较大的挑战.笔者主张通过同步辐射、核磁共振等先进测试表征手段和分子模拟理论计算来更加精细地解构C‑(A)‑S‑H的局部分子结构,尤其是铝原子的掺杂构型.
(2)当前建立的C‑S‑H胶体模型均只能用于解释一些特定的物理现象,存在较大的局限性.其主要原因在于当前学界对C‑S‑H胶体形成机制的认知仍然十分有限.进一步研究或可从纳观到细观尺度等方面开展跨尺度模拟,有助于理解C‑S‑H早期胶体的形成机制.
(3)C‑S‑H在超低温循环下存在微结构劣化及纳米力学性能退化的现象,通过不同的C‑S‑H分子编辑工程可提升其超低温稳定性.需要强调的是,笔者认为超低温下水泥基材料的劣化包含了超低温冻融作用和超低温侵蚀作用2个方面,其中前者是由孔隙水相变引起的,后者则由C‑S‑H纳米结构演变引起的.然而,目前对C‑S‑H微纳结构劣化产生的物理机制认识仍然十分有限,还需要进一步研究揭示其内在机制.
参考文献
艾金华, 何倍, 张翼, 等. 超低温作用下UHPC受弯力学行为及其本构关系 [J]. 建筑材料学报, 2024, 27(1):23‑29. [百度学术]
AI Jinhua, HE Bei, ZHANG Yi, et al. Flexural behaviour and constitutive correlation of UHPC at cryogenic temperatures [J]. Journal of Building Materials, 2024, 27(1):23‑29. (in Chinese) [百度学术]
钱维民, 苏骏, 赵家玉, 等. 超低温作用对超高韧性水泥基复合材料断裂性能的影响 [J]. 建筑材料学报, 2022, 25(9):901‑909, 916. [百度学术]
QIAN Weimin, SU Jun, ZHAO Jiayu, et al. Effect of ultra‑low temperature on fracture behavior of ultra‑high toughness cementitious composites [J]. Journal of Building Materials, 2022, 25(9):901‑909, 916. (in Chinese) [百度学术]
LIU L, YE G, SCHLANGEN E, et al. Modeling of the internal damage of saturated cement paste due to ice crystallization pressure during freezing [J]. Cement and Concrete Composites, 2011, 33(5):562‑571. [百度学术]
汪林萍, 杨全兵. NaCl‑MgCl复合除冰盐对混凝土盐冻破坏的影响及其作用机理 [J]. 建筑材料学报, 2023, 26(2):129‑136. [百度学术]
WANG Linping, YANG Quanbing. Effect and mechanism of NaCl‑MgCl2 compounded deicing salt on the salt‑frost scaling of concrete [J]. Journal of Building Materials, 2023, 26(2):129‑136. (in Chinese) [百度学术]
ZHU X P, VANDAMME M, JIANG Z W, et al. Molecular simulation of the confined crystallization of ice in cement nanopore [J]. The Journal of Chemical Physics, 2023, 159(15):154704. [百度学术]
ZHU X P, BROCHARD L, JIANG Z W, et al. Molecular simulations of premelted films between C‑S‑H and ice:Implication for cryo‑suction in cement‑based materials [J]. Cement and Concrete Research, 2023, 174:107341. [百度学术]
陈波, 袁志颖, 陈家林, 等. 冻融循环后蒸汽养护混凝土的损伤‑声发射特性 [J]. 建筑材料学报, 2024, 26(2):143‑149. [百度学术]
CHEN Bo, YUANG Zhiying, CHEN Jialin, et al. Damage‑acoustic emission characteristics of steam‑cured concrete after freeze‑thaw cycles [J]. Journal of Building Materials, 2024, 26(2):143‑149. (in Chinese) [百度学术]
MARSHALL A L. Cryogenic concrete [J]. Cryogenics, 1982, 22(11):555‑565. [百度学术]
GALLUCCI E, ZHANG X, SCRIVENER K L. Effect of temperature on the microstructure of calcium silicate hydrate (C‑S‑H) [J]. Cement and Concrete Research, 2013, 53:185‑195. [百度学术]
RICHARDSON I G, GROVES G W. Microstructure and microanalysis of hardened ordinary Portland‑cement pastes [J]. Journal of Materials Science, 1993, 28(1):265‑277. [百度学术]
RICHARDSON I G. The nature of C‑S‑H in hardened cements [J]. Cement and Concrete Research, 1999, 29(8):1131‑1147. [百度学术]
DUQUE‑REDONDO E, BONNAUD P A, MANZANO H. A comprehensive review of C‑S‑H empirical and computational models, their applications, and practical aspects [J]. Cement and Concrete Research, 2022, 156:106784. [百度学术]
HAMID S A. The crystal structure of the 11 Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5]·1H2O[J]. Zeitschrift Für Kristallographie‑Crystalline Materials, 1981, 154:189‑198. [百度学术]
MERLINO S, BONACCORSI E, ARMBRUSTER T. The real structure of tobermorite 11 Å:Normal and anomalous forms, OD character and polytypic modifications[J]. European Journal of Mineralogy, 2001, 13(3):577‑590. [百度学术]
KUNHI M A, MOUTZOURI P, BERRUYER P, et al. The atomic‑level structure of cementitious calcium aluminate silicate hydrate [J]. Journal of the American Chemical Society, 2020, 142(25):11060‑11071. [百度学术]
TAYLOR H F W. Proposed structure for calcium silicate hydrate gel [J]. Journal of the American Ceramic Society, 1986, 69(6):464‑467. [百度学术]
RICHARDSON I G, GROVES G W. Models for the composition and structure of calcium silicate hydrate(C‑S‑H) gel in hardened tricalcium silicate pastes [J]. Cement and Concrete Research, 1992, 22(6):1001‑1010. [百度学术]
ABDOLHOSSEINI Q M J, KRAKOWIAK K J, BAUCHY M, et al. Combinatorial molecular optimization of cement hydrates [J]. Nature Communications, 2014, 5:4960. [百度学术]
ZHU X P, BROCHARD L, VANDAMME M, et al. Scaling of nanoscale elastic and tensile failure properties of cementitious calcium‑silicate‑hydrate materials at cryogenic temperatures:A molecular simulation study [J]. Cement and Concrete Research, 2023, 172:107242. [百度学术]
GUO X L, SONG M. Micro‑nanostructures of tobermorite hydrothermal‑synthesized from fly ash and municipal solid waste incineration fly ash [J]. Construction and Building Materials, 2018, 191:431‑439. [百度学术]
CONG X, KIRKPATRICK R J.
RODRIGUEZ E T, RICHARDSON I G, BLACK L, et al. Composition, silicate anion structure and morphology of calcium silicate hydrates (C‑S‑H) synthesised by silica‑lime reaction and by controlled hydration of tricalcium silicate (C3S) [J]. Advances in Applied Ceramics, 2015, 114(7):362‑371. [百度学术]
LOVE C A, RICHARDSON I G, BROUGH A R. Composition and structure of C‑S‑H in white Portland cement‑20% metakaolin pastes hydrated at 25 ℃[J]. Cement and Concrete Research, 2007, 37(2):109‑117. [百度学术]
FAUCON P, CHARPENTIER T, NONAT A, et al. Triple‑quantum two‑dimensional
LOEWENSTEIN W. The distribution of aluminum in the tetrahedra of silicates and aluminates[J]. American Mineralogist, 1954, 39(1/2):92‑96. [百度学术]
LARIN A V. The Loewenstein rule:The increase in electron kinetic energy as the reason for instability of Al‑O‑Al linkage in aluminosilicate zeolites[J]. Physics and Chemistry of Minerals, 2013, 40(10):771‑780. [百度学术]
KOMARNENI S, ROY D M, FYFE C A, et al. Naturally occurring 1.4 nm tobermorite and synthetic jennite:Characterization by
ANDERSEN M D, JAKOBSEN H J, SKIBSTED J. Incorporation of aluminum in the calcium silicate hydrate (C‑S‑H) of hydrated Portland cements: A high‑field
ZHU X P, VANDAMME M, BROCHARD L, et al. Nature of aluminates in C‑A‑S‑H:A cryogenic stability insight, an extension of DNA‑code rule, and a general structural‑chemical formula[J]. Cement and Concrete Research, 2023, 167:107131. [百度学术]
RICHARDSON I G, BROUGH A R, GROVES G W, et al. The characterization of hardened alkali‑activated blast‑furnace slag pastes and the nature of the calcium silicate hydrate (C‑S‑H) phase[J]. Cement and Concrete Research, 1994, 24(5):813‑829. [百度学术]
MYERS R J, BERNAL S A, SAN NICOLAS R, et al. Generalized structural description of calcium‑sodium aluminosilicate hydrate gels:The cross‑linked substituted tobermorite model[J]. Langmuir, 2013, 29(17):5294‑5306. [百度学术]
RICHARDSON I G. Model structures for C‑(A)‑S‑H(Ⅰ)[J]. Acta Crystallographica Section B:Structural Science, Crystal Engineering and Materials, 2014, 70(6):903‑923. [百度学术]
KUNHI M A, PARKER S C, BOWEN P, et al. An atomistic building block description of C‑S‑H—Towards a realistic C‑S‑H model[J]. Cement and Concrete Research, 2018, 107:221‑235. [百度学术]
POWERS T C, BROWNYARD T L. Studies of the physical properties of hardened cement paste[J]. Journal of American Concrete Institute, 1946, 43:101‑132. [百度学术]
POWERS T C. Structure and physical properties of hardened Portland cement paste[J]. Journal of the American Ceramic Society, 1958, 41(6):1‑6. [百度学术]
BRUNAUER S, MIKHAIL R S, BODOR E E. Some remarks about capillary condensation and pore structure analysis[J]. Journal of Colloid and Interface Science, 1967, 25(3):353‑358. [百度学术]
FELDMAN R F, SEREDA P J. A model for hydrated Portland cement paste as deduced from sorption‑length change and mechanical properties[J]. Matériaux et Constructions, 1968, 1(6):509‑520. [百度学术]
FELDMAN R F. Application of the helium inflow technique for measuring surface area and hydraulic radius of hydrated Portland cement[J]. Cement and Concrete Research, 1980, 10(5):657‑664. [百度学术]
WITTMANN F H. The structure of hardened cement paste—A basis for a better understanding of the materials properties[C]// Proceedings of the Hydraulic Cement Paste:Their Structure and Properties. Sheffield:Cement and Concrete Association, 1976:96‑116. [百度学术]
PAPATZANI S, PAINE K, CALABRIA‑HOLLEY J. A comprehensive review of the models on the nanostructure of calcium silicate hydrates[J]. Construction and Building Materials, 2015, 74:219‑234. [百度学术]
JENNINGS H M. A model for the microstructure of calcium silicate hydrate in cement paste[J]. Cement and Concrete Research, 2000, 30(1):101‑116. [百度学术]
TENNIS P D, JENNINGS H M. A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes[J]. Cement and Concrete Research, 2000, 30(6):855‑863. [百度学术]
JENNINGS H M. Refinements to colloid model of C‑S‑H in cement:CM‑Ⅱ [J]. Cement and Concrete Research, 2008, 38(3):275‑289. [百度学术]
ZHU X P, REN Q, HE B, et al. Upscaling degradation of cementitious calcium (aluminate) silicate hydrate upon ultra‑low temperature attack:A multiscale insight and a bottom‑up enhancement route[J]. Composites Part B:Engineering, 2022, 243:110122. [百度学术]
ZHU X P, QIAN C, HE B, et al. Experimental study on the stability of C‑S‑H nanostructures with varying bulk CaO/SiO2 ratios under cryogenic attack[J]. Cement and Concrete Research, 2020, 135:106114. [百度学术]
ZHU X P, JIANG Z W, HE B, et al. Investigation on the physical stability of calcium‑silicate‑hydrate with varying CaO/SiO2 ratios under cryogenic attack[J]. Construction and Building Materials, 2020, 252:119103. [百度学术]
HE B, ZHANG H E, ZHU X P, et al. Thermal‑dependent brittleness effect of ultra‑high performance concrete exposed to cryogenic flexural loads by acoustic emission evaluation[J]. Cement and Concrete Composites, 2023, 139:105056. [百度学术]
HE B, ZHU X P, REN Q, et al. Effects of fibers on flexural strength of ultra‑high‑performance concrete subjected to cryogenic attack[J]. Construction and Building Materials, 2020, 265:120323. [百度学术]
ZHU X P, REN Q, HE B, et al. The nanomechanical nature of cementitious calcium‑(alumino)silicate‑hydrate under ultra‑low temperature attack:An intrinsic transition and the role of aluminum for bottom‑up enhancement[J]. Cement and Concrete Composites, 2022, 134:104811. [百度学术]
ZHU X P, BROCHARD L, VANDAMME M, et al. A hierarchical C‑S‑H/organic superstructure with high stiffness, super‑low porosity, and low mass density [J]. Cement and Concrete Research, 2024, 176:107407. [百度学术]