摘要
采用球霰石(球霰石晶型碳酸钙)替代石灰石粉(主要为方解石晶型碳酸钙)制备水泥净浆与砂浆试件,研究了碳酸钙晶型对水泥砂浆抗压强度和微结构的影响,通过水化热测试、X射线衍射分析等测试手段探索了球霰石与方解石的作用机理. 结果表明:球霰石较方解石具有更高的化学活性,可提高体系的水化速率;在硅铝酸盐胶凝体系中引入球霰石,能够诱导煅烧高岭土尾矿与碳酸钙发生反应,所形成的水化硅(铝)酸钙(C‑(A)‑S‑H)凝胶和水化碳铝酸钙晶体等水化产物包覆在球霰石表面,与水泥基体胶结在一起,细化了孔隙结构,显著提升了水泥砂浆的抗压强度.
在水泥和混凝土中使用粉煤灰、粒化高炉矿渣和煅烧黏土等富铝辅助胶凝材料,可以增加胶凝体系中的铝相含
鉴于此,本文针对球霰石在硅铝酸盐胶凝体系的潜在性能开展了系统试验研究.
水泥为P∙O 52.5普通硅酸盐水泥(C),安徽海螺水泥股份有限公司产;煅烧高岭土尾矿(CKT),倍墨实业有限公司产;石膏,纯度97.0%(质量分数,文中涉及的纯度、组成等均为质量分数),上海阿拉丁生物科技公司产;石灰石粉(L),纯度99.0%,倍墨实业有限公司产;球霰石(V)采用二氧化碳鼓泡法合
Material | CaO | SiO2 | Al2O3 | Fe2O3 | MgO | K2O | SO3 | TiO2 | Na2O | IL |
---|---|---|---|---|---|---|---|---|---|---|
C | 56.77 | 20.86 | 5.90 | 3.61 | 3.50 | 0 | 2.43 | 0 | 0 | 1.18 |
CKT | 0.89 | 53.58 | 34.33 | 2.37 | 2.54 | 3.88 | 0.11 | 0.21 | 0.29 | 1.14 |

图1 原材料的 SEM照片
Fig.1 SEM images of raw materials
参考L
参考GB/T 17671—2021《水泥胶砂强度检验方法(ISO 法)》,制备尺寸为40 mm×40 mm×160 mm的立方体试件,试件浇筑24 h后脱模并置于标准环境((20±2)℃,相对湿度为95%)中养护至3、7、28 d. 一部分试件用于抗压强度测试;另一部分在不同区域选取合适的颗粒样品,先将其置于无水乙醇中浸泡7 d终止水化,再置于60 ℃的真空干燥箱中干燥48 h,保存在干燥皿中,用于微观性能分析.

图2 LCTC、NCTC和VCTC的抗压强度
Fig.2 Compressive strength of LCTC, NCTC and VCTC

图3 LCTC、NCTC和VCTC新拌浆体的水化热曲线
Fig.3 Heat of hydration curves of fresh slurry of LCTC, NCTC and VCTC
由
由

图4 养护龄期为3、7、28 d 时LCTC、NCTC和VCTC水化产物的XRD图谱
Fig.4 XRD patterns of hydration products of LCTC, NCTC and VCTC curing for 3,7, 28 d

图5 养护龄期为3 d时LCTC、NCTC和VCTC水化产物的微观形貌
Fig.5 Microscropic morphologies of hydration products of LCTC, NCTC and VCTC curing for 3 d

图6 养护龄期为28 d时 LCTC、NCTC 和VCTC 的TG/DTG曲线
Fig.6 TG/DTG curves of LCTC, NCTC and VCTC curing for 28 d
研究显示,净浆中结合水的含量是通过40~450 ℃下的质量损失量化
Group No. | Bound water | CH | CaCO3 |
---|---|---|---|
LCTC | 14.48 | 2.07 | 14.77 |
NCTC | 16.73 | 1.52 | 10.41 |
VCTC | 17.25 | 1.42 | 9.79 |
利用VG studio MAX22软件对工业CT切片进行孔隙结构分析.

图7 LCTC、NCTC和VCTC的孔隙分布
Fig.7 Pore distributions of LCTC, NCTC and VCTC
Group No. | D50/μm | D90/μm | Porosity(by volume)/% | Most portable pore size/μm |
---|---|---|---|---|
LCTC | 360 | 600 | 9.1 | 416 |
NCTC | 190 | 360 | 5.3 | 230 |
VCTC | 180 | 350 | 3.2 | 211 |
Note: D50 and D90 represent the values corresponding to the cumulative distribution percentages of 50% and 90% in the particle size distribution,respectively.
由
(1)球霰石-煅烧高岭土尾矿-水泥复合胶凝体系(VCTC)和纳米碳酸钙-煅烧高岭土尾矿-水泥复合胶凝体系(NCTC)的各龄期抗压强度较石灰石粉-煅烧高岭土尾矿-水泥复合胶凝体系(LCTC)均有提升,且球霰石对硅铝酸盐胶凝体系的早期强度改善效果更佳.
(2)相较纳米碳酸钙和石灰石粉,球霰石可明显增大体系水化加速期水化热曲线的斜率,并诱导硅酸三钙(C3S)水化加速,且VCTC中168 h放热量较NCTC提高21.04%,较LCTC提高25.98%.
(3)LCTC中,由于铝相活性较低,主要形成单碳型水化铝酸钙(Mc);虽然VCTC中在养护7,28 d时主要的碳铝酸盐相也是Mc,但其含量远高于LCTC;NCTC中碳铝酸盐的主要形式是Mc和半碳型水化铝酸钙(Hc).这表明,NCTC和VCTC中更多的碳酸钙参与了与富铝相的反应.
(4)球霰石活性高,其水化产物填充于体系内部结构中,细化了孔隙结构;在LCTC与NCTC中未观察到此填充机制,仅有少量水化产物包覆在方解石表面,且界面过渡区较为薄弱.
(5)相较LCTC,NCTC和VCTC中的颗粒堆积密实度较高,孔隙率较低,最可几孔径更小,且球霰石晶型碳酸钙对体系孔隙率的影响更为明显. 纳米碳酸钙和球霰石均具有使孔径均匀化的明显效果,使体系中孔径小于100 μm的孔隙占比仍保持在较高水平.
参考文献
HANEIN T, THIENEL K C, ZUNINO F, et al. Clay calcination technology:State‑of‑the‑art review by the RILEM TC 282‑CCL [J]. Materials and Structures, 2022, 55:3. [百度学术]
LIU X Y, CHEN Q, SONG F C, et al. Research on limestone calcined clay cement‑based ultra‑high performance concrete with high cement substitution:Mixture design and engineering properties[J].Construction and Building Materials, 2023, 409:133913. [百度学术]
SKOCEK J, ZAJAC M, BEN HAHA M. Carbon capture and utilization by mineralization of cement pastes derived from recycled concrete [J]. Scientific Reports, 2020, 10(1):5614. [百度学术]
SONG Q F, GUO M Z, WANG L, et al. Use of steel slag as sustainable construction materials:A review of accelerated carbonation treatment [J]. Resources, Conservation and Recycling, 2021, 173:105740. [百度学术]
AVET F, SCRIVENER K. Investigation of the calcined kaolinite content on the hydration of limestone calcined clay cement (L
KRISHNAN S, EMMANUEL A C, SHAH V, et al. Industrial production of limestone calcined clay cement (L
HAY R, LI L, CELIK K. Shrinkage, hydration, and strength development of limestone calcined clay cement (L
HARGIS C W, TELESCA A, MONTEIRO P J M. Calcium sulfoaluminate (Ye'elimite) hydration in the presence of gypsum, calcite, and vaterite [J]. Cement and Concrete Research, 2014, 65:15‑20. [百度学术]
刘家文. 碳酸钙-铝酸盐矿物复合体系的水化行为与胶凝性能研究[D].重庆:重庆大学,2020. [百度学术]
LIU Jiawen. Study on hydration behavior and gelling properties of calcium carbonate‑aluminate mineral composite system [D].Chongqing :Chongqing University,2020. (in Chinese) [百度学术]
蒋金洋, 余培培, 眭世玉, 等. 一种硅酸盐胶凝材料及其制备方法:117585957A [P].20240223. [百度学术]
JIANG Jinyang, YU Peipei, SUI Shiyu, et al. A silicate cementitious material and its preparation method:117585957A [P]. 20240223. (in Chinese) [百度学术]
KONTREC J, TOMASIC N, MLINARIĆ N M, et al. Effect of pH and type of stirring on the spontaneous precipitation of CaCO3 at identical initial supersaturation, ionic strength and a(C
OGINO T, SUZUKI T, SAWADA K. The formation and transformation mechanism of calcium carbonate in water [J]. Geochimica et Cosmochimica Acta, 1987, 51(10):2757‑2767. [百度学术]
管学茂, 魏红姗, 马小娥, 等. C3S2矿物的加速碳化硬化过程 [J]. 建筑材料学报, 2018, 21(6):900‑905. [百度学术]
GUAN Xuemao, WEI Hongshan, MA Xiaoe, et al. Rapid hardening process of C3S2 minerals by accelerated carbonation[J]. Journal of Building Materials, 2018, 21(6):900‑905. (in Chinese) [百度学术]
MAIER M, SCHERB S, NEISSER‑DEITERS A, et al. Hydration of cubic tricalcium aluminate in the presence of calcined clays [J]. Journal of the American Ceramic Society, 2021, 104(7):3619‑3631. [百度学术]
MAIER M, SPOSITO R, BEUNTNER N, et al. Particle characteristics of calcined clays and limestone and their impact on early hydration and sulfate demand of blended cement[J]. Cement and Concrete Research, 2022, 154:106736. [百度学术]
ZAJAC M, ROSSBERG A, LE SAOUT G, et al. Influence of limestone and anhydrite on the hydration of Portland cements[J]. Cement and Concrete Composites, 2014, 46:99‑108. [百度学术]
HAN C L, HU Y P, WANG K, et al. Preparation and in‑situ surface modification of CaCO3 nanoparticles with calcium stearate in a microreaction system [J]. Powder Technology, 2019, 356:414‑422. [百度学术]
SCRIVENER K L, JUILLAND P, MONTEIRO P J M. Advances in understanding hydration of Portland cement [J]. Cement and Concrete Research, 2015, 78:38‑56. [百度学术]
DIXIT A, DU H J, DANG J T, et al. Quaternary blended limestone‑calcined clay cement concrete incorporating fly ash [J]. Cement and Concrete Composites, 2021, 123:104174. [百度学术]
DE WEERDT K, BEN HAHA M, LE SAOUT G, et al. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash[J]. Cement and Concrete Research, 2011, 41(3):279‑291. [百度学术]