摘要
为解决直接插入钢筋增强3D打印混凝土技术中的空隙问题,提出了原位涂层技术.分别使用自密实砂浆与超细灌浆水泥作为原位涂层材料,制备了原位涂层钢筋增强3D打印混凝土,研究了钢筋在混凝土中的拉拔性能.结果表明:使用水泥基材料对钢筋进行原位涂层,可以得到密实的钢筋-混凝土界面,与直接插入技术相比,拉拔强度得到了最大345.0%的提升;钢筋拉拔曲线符合常规的四段式.这证明使用水泥基材料的原位涂层技术可以实际应用于3D打印混凝土的加筋工艺中,并有效提升3D打印混凝土结构的力学性能及耐久性能,为混凝土3D打印技术的工程应用提供了创新方法及理论基础.
挤出式3D混凝土打印技术的研究已开展多
本文提出一种原位涂层技术,在钢筋插入的过程中,使用涂层材料为钢筋添加涂层,涂层材料与混凝土同步固化,最终消除钢筋与3DPC之间的空隙缺陷,增强钢筋与3DPC的黏结.本文选用自密实砂浆(SCC)与超细灌浆水泥(GRC)作为原位涂层材料(具有高流动性),其与新打印的3DPC(具有低流动性)及钢筋(无流动性)之间均可实现密实接触.并对钢筋拉拔性能进行试验研究,揭示原位涂层钢筋3DPC的黏结特性,以期为原位涂层技术的工程应用提供理论基础.
原位涂层技术的具体实现如

图1 原位涂层技术及应用示意图
Fig.1 In‑situ coating technique and its application
涂层材料将钢筋全面包裹并充分填充了混凝土空间,通心管的外壁直径就是涂层钢筋的最外层直径.原位涂层材料必须在液态时具备较高的流动性,并在固态时与钢筋和3DPC具有高效的黏结能力.笔者前期的研究中使用了环氧树脂作为涂层材料,使钢筋和3DPC的握裹力得到了有效提
在工程应用中,原位涂层技术可以与3D打印操作同步进行,如
采用普通硅酸盐水泥OPC 42.5R作为胶凝材料,购自佛山,28 d抗压强度48.5 MPa.采用空心玻璃珠(HGB)作为细骨料(代替细砂),平均粒径80 μm,密度0.60 g/c
OPC | HGB | FA | SF | Water | HRWR | HPMC | PA | AR | TA | DFA |
---|---|---|---|---|---|---|---|---|---|---|
54.40 | 10.88 | 8.16 | 2.73 | 21.76 | 0.11 | 0.16 | 0.54 | 0.41 | 0.82 | 0.03 |
按ASTM C780‑20 Standard Test Method for Preconstruction and Construction Evaluation of Mortars for Plain and Reinforced Unit Masonry 测量新拌混凝土的静态屈服应力.将3DPC混合料拌和均匀后分成2组:一组在搅拌机中持续搅拌,以模拟材料在打印仓中搅拌;另一组静置.在测量时将混合料倒入模具中,落锥(质量m,锥角θ)从指定高度以自由落体方式落入混合料中,测量落锥的穿透深度(h).按

图2 新拌3DPC的静态屈服应力
Fig.2 Static yield strength of fresh 3D printed concrete
τ0= | (1) |
原位涂层技术所需涂层材料需要具备较高的流动性,以渗入狭窄的预留涂层空间. 因此,本文选定了2种商用水泥基材料作为原位涂层材料:自密实砂浆SCC(型号CGM-300)与超细灌浆水泥GRC(型号CGM-800),均购自北京中德新亚建筑材料有限公司.SCC具有高强度、高流动度、自密实的优良特点.GRC主要用于混凝土结构裂缝修复,其流动性高,可进行压力注射使之渗入不同宽度的裂缝中.两者流动性均较高,无需振捣即可实现自密实.两者的力学性能与流动性能详见
Material | Maximum particle size | Water‑cement ratio(by mass) | Fluidity at 30 min/mm | Viscosity/ (mPa·s) | Initial setting time/min | Vertical shrinkage ratio at 24 h/% | 28 d strength/MPa | ||
---|---|---|---|---|---|---|---|---|---|
Compressive | Tensile | Flexural | |||||||
SCC | 1.0 mm | 9∶1 | 268 | 9 922 | 45 | 0.04 | 68.8 | 4.3 | 7.5 |
GRC | 5 μm | 8∶2 | 223 | 6 374 | 25 | 0.20 | 52.2 | 2.0 | 4.2 |
为研究原位涂层技术制备的加筋3DPC的握裹力,去除3D打印过程产生的层间弱黏结的影响,本文使用定制模具保障通心管、钢筋与外围的模具轴心相同. 具体试件制备过程如

图3 试件制备及测试过程
Fig.3 Preparation and pullout test of specimens
通心管外径即为原位涂层的外直径,分别为16、18、20 mm,钢筋直径为6 mm,因此涂层厚度分别为5、6、7 mm.根据通心管外径将使用SCC、GRC制备的试件分别记作SCCΦ16、SCCΦ18、SCCΦ20和GRCΦ16、GRCΦ18、GRCΦ20.同时也制备了2组对照试件:一组不使用涂层,先将钢筋放入,然后再浇入混凝土,并进行振动密实操作,试件记作PC‑CAST;另一组先将混凝土浇入,再模拟常规的3D打印过程插入钢筋,不进行振动密实操作,试件记作PC‑DRIN. 每组制备3个试件.所有试件经标准养护28 d后,进行
各试件的拉拔曲线如

图4 各试件的拉拔曲线
Fig.4 Pullout curves of specimens
PC‑CAST试件拉拔曲线为浇制混凝土中钢筋的拉拔曲线,与常规钢筋混凝土拉拔曲线较为一致.但相应的拉拔强度(26.88 MPa)小于常规浇制混凝土.究其原因:一是本文所用钢筋直径为6 mm,小于常规测试中所用钢筋直径(12、16 mm);二是3DPC抗压强度仅有21.60 MPa,低于常规混凝土的抗压强度.
如PC‑DRIN试件拉拔曲线所示,直插加强筋试件的拉拔力大幅降低,计算所得最大拉拔强度为10.90 MPa,与PC‑CAST试件相比,降低了59.4%,这主要是由于钢筋直接插入混凝土的过程中引入了大量的空

图5 加强筋、涂层与3DPC的界面形貌
Fig.5 Interfacial morphology of rebar, coating and 3DPC
而对于使用SCC或GRC原位涂层的试件,由于涂层材料流动性较高(见
由于GRC的24 h竖向膨胀率(0.20%,见
传统应用中,钢筋涂层主要是为了保护钢筋防止锈

图6 试件剖面示意及照片
Fig.6 Section diagram and photo
综上,钢筋的拉拔破坏过程取决于钢筋、涂层、混凝土3种材料的力学特性及相互黏结关系,需要进一步的研究来揭示三者之间的具体规律.
将最大拉拔力换算为拉拔强度,如

图7 各试件拉拔强度
Fig.7 Pullout strength of specimens
3DPC与涂层材料之间的黏结类似于新旧混凝土之间的黏结,但又有所不同.在执行涂层操作时,3DPC尚未达到初凝,与涂层材料之间有较为有效的黏结,可视作2种混凝土材料的同时浇筑黏结. 从理论上来讲,原位涂层的操作时间越快越好.但其中的操作因素(如插入通心管、灌入涂层材料、拔出通心管等)均会影响两者的黏结效果.因此,有必要开展更深入的研究,并开发自动化的工艺技术.
由于环氧树脂的黏度(10~100 mPa·s)远低于SCC或GRC,因此环氧树脂的涂层操作更为顺利. 而在使用SCC或GRC填充钢筋与通心管之间的空隙时,需要对钢筋进行振动或者旋转,以促进涂层材料的渗入. 另外,SCC及GRC材料中存在大颗粒(SCC中存在细砂,GRC中存在水泥颗粒),在振动过程中容易发生离析,导致材料不均匀. 因此,需要进一步研究更加适用的涂层材料.
(1)原位涂层技术既解决了直接插入钢筋给3D打印混凝土3DPC带来的空隙问题,又保护了钢筋,减少了锈蚀的产生. 3DPC、涂层、钢筋之间具备密实的黏结界面.
(2)原位涂层技术有效提升了3DPC对钢筋的握裹力.拉拔强度提升幅度最大为345.0%,平均为239.0%. 由于涂层的力学性能及流动性优于3DPC,因此所得原位涂层钢筋试件的拉拔强度大多超过了使用3DPC浇制的钢筋混凝土.
(3)原位涂层钢筋3DPC拉拔曲线呈四段式.涂层破裂后,对钢筋拔出产生了断续式的锚固作用,因此得到了起伏的拉拔曲线.
(4)后续仍需进一步开展对原位涂层材料的研发,解决涂层材料与3DPC的收缩一致性问题.另外,研制相关的机电自动涂层设备可有效提高涂层效率,提升涂层质量,有望解决3D打印混凝土技术的关键问题.
参考文献
BESTER F, VAN DEN HEEVER M, KRUGER J, et al. Reinforcing digitally fabricated concrete:A systems approach review[J]. Additive Manufacturing, 2021, 37:101737. [百度学术]
侯少丹,肖建庄,段珍华. 3D打印细石混凝土调配及其可打印性和力学性能[J]. 建筑材料学报, 2022, 25(7):730‑736. [百度学术]
HOU Shaodan, XIAO Jianzhuang, DUAN Zhenhua. Preparation of 3D printable concrete with small coarse aggregate and its printability and mechanical properties[J]. Journal of Building Materials, 2022, 25(7):730‑736. (in Chinese) [百度学术]
刘天浩,王里,李之建,等.混凝土3D打印加筋增韧方法研究进展[J].工业建筑,2021,51(6):9‑15. [百度学术]
LIU Tianhao, WANG Li, LI Zhijian, et al. A review of incorporating reinforcement method in 3D concrete printing[J]. Industrial Construction, 2021, 51(6):9‑15. (in Chinese) [百度学术]
KEITA E, BESSAIES‑BEY H, ZUO W Q, et al. Weak bond strength between successive layers in extrusion‑based additive manufacturing:Measurement and physical origin[J]. Cement and Concrete Research, 2019, 123:105787. [百度学术]
DIGGS‑MCGEE B N, KREIGER E L, KREIGER M A, et al. Print time vs. elapsed time:A temporal analysis of a continuous printing operation for additive constructed concrete[J]. Additive Manufacturing, 2019, 28:205‑214. [百度学术]
MARCHMENT T, SANJAYAN J, XIA M. Method of enhancing interlayer bond strength in construction scale 3D printing with mortar by effective bond area amplification[J]. Materials and Design, 2019, 169:196‑204. [百度学术]
HAMBACH M, VOLKMER D. Properties of 3D‑printed fiber‑reinforced Portland cement paste[J]. Cement and Concrete Composites, 2017, 79:62‑70. [百度学术]
BAZ B, AOUAD G, LEBLOND P, et al. Mechanical assessment of concrete—Steel bonding in 3D printed elements[J]. Construction and Building Materials, 2020, 256:119457. [百度学术]
BAZ B, AOUAD G, REMOND S. Effect of the printing method and mortar’s workability on pull‑out strength of 3D printed elements[J]. Construction and Building Materials, 2020, 230:121‑128. [百度学术]
MATTHAUS C, KOFLER N, KRANKEL T, et al. Interlayer reinforcement combined with fiber reinforcement for extruded lightweight mortar elements[J]. Materials, 2020, 13(21):4778. [百度学术]
BESTER F, VAN DEN HEEVER M, KRUGER J, et al. Steel fiber links in 3D printed concrete[C]//Second RILEM International Conference on Concrete and Digital Fabrication. [S. l.]:Springer Cham., 2020, 28:398‑406. [百度学术]
PERROT A, JACQUET Y, RANGEARD D, et al. Nailing of layers:A promising way to reinforce concrete 3D printing structures[J]. Materials, 2020, 13(7):1518. [百度学术]
CAO X P, YU S H, ZHENG D P, et al. Nail planting to enhance the interface bonding strength in 3D printed concrete[J]. Automation in Construction, 2022, 141:104392. [百度学术]
MARCHMENT T, SANJAYAN J. Bond properties of reinforcing bar penetrations in 3D concrete printing[J]. Automation in Construction, 2020, 120:103394. [百度学术]
MARCHMENT T, SANJAYAN J. Reinforcement method for 3D concrete printing using paste‑coated bar penetrations[J]. Automation in Construction, 2021, 127:103694. [百度学术]
HOSSEINI E, ZAKERTABRIZI M, KORAYEM A H, et al. A novel method to enhance the interlayer bonding of 3D printing concrete:An experimental and computational investigation[J]. Cement and Concrete Composites, 2019, 99:112‑119. [百度学术]
HOSSEINI E, ZAKERTABRIZI M, HABIBNEJAD KORAYEM A, et al. Orbital overlapping through induction bonding overcomes the intrinsic delamination of 3D‑printed cementitious binders[J]. ACS Nano, 2020, 14(8):9466‑9477. [百度学术]
ZHANG Y, ZHANG Y S, YANG L, et al. Hardened properties and durability of large‑scale 3D printed cement‑based materials[J]. Materials and Structures, 2021, 54(1):45. [百度学术]
BAZ B, AOUAD G, KLEIB J, et al. Durability assessment and microstructural analysis of 3D printed concrete exposed to sulfuric acid environments[J]. Construction and Building Materials, 2021, 290:367‑386. [百度学术]
SUN X Y, ZHOU J W, WANG Q, et al. PVA fibre reinforced high‑strength cementitious composite for 3D printing:Mechanical properties and durability[J]. Additive Manufacturing, 2022, 49:102500. [百度学术]
CAO X P, YU S H, CUI H Z, et al. In‑situ coating technique for rebar installation for 3D‑printed reinforced concrete[J]. Construction and Building Materials, 2023, 397:132310. [百度学术]
CHEN Y, CHAVES FIGUEIREDO S, LI Z, et al. Improving printability of limestone‑calcined clay‑based cementitious materials by using viscosity‑modifying admixture[J]. Cement and Concrete Research, 2020, 132:106040. [百度学术]
朱艳梅, 张翼, 蒋正武. 羟丙基甲基纤维素对3D打印砂浆性能的影响[J]. 建筑材料学报, 2021, 24(6):1123‑1130. [百度学术]
ZHU Yanmei, ZHANG Yi, JIANG Zhengwu. Effect of hydroxypropyl methylcellulose ether on properties of 3D printing mortar[J]. Journal of Building Materials, 2021, 24(6):1123‑1130. (in Chinese). [百度学术]
MA G W, HUANG Y M, ASLANI F, et al. Tensile and bonding behaviours of hybridized BFRP‑steel bars as concrete reinforcement[J]. Construction and Building Materials, 2019, 201:62‑71. [百度学术]