摘要
开展了不同多壁碳纳米管(MWCNTs)掺量混凝土的硫酸盐侵蚀和冻融循环耦合试验,分析了MWCNTs混凝土的耐久性劣化规律,同时基于Weibull分布建立了MWCNTs混凝土的可靠性分析模型.结果表明:掺入MWCNTs可提高混凝土的抗盐冻性能,掺入0.05% MWCNTs的混凝土经历200次耦合循环后抗压强度比对照组提高了14.5%,此掺量下MWCNTs对混凝土的抗盐冻性改善效果最好;建立的基于Weibull分布可靠性模型能较好地预测盐冻环境下MWCNTs混凝土的损伤劣化情况,预测结果与试验结果一致.
中国西北盐湖地区的基础设施项目面临盐碱和冻融环境的挑
针对混凝土可靠性寿命预测的问题,学者们提出了多种预测模型.其中,基于Weibull分布函数的方法在可靠性分析和寿命预测方面具有明显的优势,并被广泛应用于混凝土材料的寿命预
胶凝材料为P⋅O 42.5普通硅酸盐水泥,粉煤灰采用密度为2.09 g/c
Material | CaO | SiO2 | Al2O3 | Fe2O3 | SO3 | MgO | Na2O | K2O |
---|---|---|---|---|---|---|---|---|
Cement | 63.28 | 22.12 | 6.56 | 3.50 | 2.10 | 1.52 | 0.37 | 0.55 |
Fly ash | 3.93 | 55.25 | 28.75 | 6.32 | 1.70 | 1.59 | 0.54 | 1.92 |
Diameter/nm | Length/μm | Purity(by mass)/% | Ash content(by mass)/% | Specific surface area/( |
---|---|---|---|---|
10-20 | 5-15 | >97 | <3 | 100-160 |
混凝土中水泥、粗骨料、细骨料、水、减水剂和粉煤灰的用量分别为276.00、1 162.00、707.00、155.00、10.05、69.00 kg/
试件制备前对MWCNTs进行分散处理:将PVP和MWCNTs按质量比2∶1在水中混合,用磁力搅拌器搅拌10 min后,用超声分散器对混合溶液进行60 min的分散.分散时间和强度的选择主要依据本课题组前期的研究成
将试件置于Na2SO4溶液中浸泡4 d后,置入含有Na2SO4溶液的冻融机中进行盐冻耦合试验.设置盐冻耦合循环总次数为200次,每25次取出试件,干燥后测试其动弹性模量和抗压强度,每组3个试件,结果取平均值.从破碎试件中选取代表性样品开展扫描电镜(SEM)试验和压汞(MIP)试验.
为了更加直观地展示MWCNTs对盐冻耦合作用下混凝土损伤的抑制作用,根据宏观损伤力学原理,定义了盐冻耦合循环次数为N时MWCNTs混凝土的盐冻损伤度D
(1) |
式中:Er为混凝土经过N次盐冻耦合循环后的相对动弹性模量.Df的取值范围为[0,1].当Df ≥1时,试件已经被破坏.
不同MWCNTs掺量下试件的抗压强度及损失率见

图1 不同MWCNTs掺量下试件的抗压强度及损失率
Fig.1 Compressive strength and loss rate of specimens with different MWCNTs dosages
不同盐冻耦合循环次数下MWCNTs混凝土的损伤度见

图2 不同盐冻耦合循环次数下MWCNTs混凝土的损伤度
Fig.2 Damage degree of MWCNTs concretes under different salt freezing coupled cycles
盐冻耦合作用后MWCNTs混凝土的SEM照片见

图3 盐冻耦合作用后MWCNTs混凝土的SEM照片
Fig.3 SEM images of MWCNTs concretes after salt freezing coupled effect
不同MWCNTs掺量下混凝土的孔结构特征见

图4 不同MWCNTs掺量下混凝土的孔结构特征
Fig.4 Pore structure characteristics of concretes with different MWCNTs dosages
通过对比相同盐冻耦合循环次数下混凝土的损伤度发现,当MWCNTs掺量为0.05%时,混凝土损伤度的增加量最小.由此可见,在本文掺量范围内,0.05%掺量的MWCNTs对混凝土的抗盐冻性能提升效果最好.Ramezani

图5 不同MWCNTs掺量下盐冻耦合作用前混凝土的SEM照片
Fig.5 SEM images of concretes with different MWCNTs dosages before salt freezing coupled effect
Weibull分布由于其对小样本的准确和可靠预测被广泛应用于混凝土材料的可靠性分
(2) |
式中:β、δ、γ分别为尺度参数、形状参数和阈值参数,分别满足β0、δ0、γ ≥0;t为寿命产品失效首次达到失效阈值的时间.其分布密度函数f(t)和可靠度函数R(t)可以表示为:
(3) |
(4) |
对不同MWCNTs掺量下混凝土损伤度的数据进行检验,其概率分布见

图6 混凝土损伤度的概率分布
Fig.6 Probability distribution of damage degree of concretes
为了验证Weibull分布是否适用,采用K‑S检验法对损伤度Df进行假定分布检验,计算结果见
Specimen | K‑S test calculation value |
---|---|
MCNT‑5 | 0.283 |
MCNT‑10 | 0.381 |
MCNT‑15 | 0.218 |
在建立混凝土盐冻损伤可靠性模型时,为减小模型的复杂程度,将γ设定为0,即认为MWCNTs混凝土在盐冻耦合下的可靠性寿命服从二参数Weibull分布,则其可靠度函数变为:
(5) |
MWCNTs混凝土在盐冻耦合作用下的可靠度与盐冻耦合循环次数成反比,即可靠度随着盐冻耦合循环次数的增加而降低,直到其可靠度降为0时,混凝土结构失效,因此0<R(t)<1.由
(6) |
本文采用最小二乘法对所建立的MWCNTs混凝土盐冻损伤可靠性模型参数进行估计.首先对
(7) |
令y=ln 、x=ln N、a=δ、b=-δln β,则

图7 混凝土损伤度回归分析结果
Fig.7 Regression analysis results of damage degree of concretes
Specimen | δ | β |
---|---|---|
MCNT‑5 | 1.72 | 298.17 |
MCNT‑10 | 1.55 | 248.67 |
MCNT‑15 | 1.57 | 273.54 |
将

图8 MWCNTs混凝土的可靠度函数和概率密度曲线
Fig.8 Reliability function and probability density curve of MWCNTs concretes
观察不同MWCNTs掺量下混凝土可靠度曲线可以发现,试件MCNT‑5的可靠度曲线位置高于其他2组,即在相同可靠度水平下,试件MCNT‑5所达到的盐冻耦合循环次数更多.这表明MWCNTs掺量为0.05%的混凝土抗盐冻侵蚀能力更强,其可靠度降为0时的盐冻耦合循环次数为900次.而MWCNTs掺量为0.10%和0.15%的混凝土可靠度降为0时的盐冻耦合循环次数分别为810、880次.对比抗压强度和损伤度的分析结果可知,使用Weibull分布进行可靠性寿命预测的结果与试验研究结果相吻合.
概率密度主要用来表征混凝土在单位时间内的失效概率,其峰值越高,材料可靠度开始出现下降的时间越早,材料的抗侵蚀性能越差.由
(1)在混凝土中掺入适量的多壁碳纳米管(MWCNTs)可以提高混凝土的抗盐冻性能.在本文所设定的MWCNTs掺量范围(0%~0.15%)内,当MWCNTs的掺量为0.05%时,MWCNTs混凝土的抗盐冻性能最好,有利于提高混凝土的残余力学性能,降低其在盐冻环境下的损伤度.
(2)根据损伤度建立的MWCNTs混凝土盐冻损伤可靠性模型能够较好地描述不同MWCNTs掺量下混凝土可靠度的退化过程.在盐冻耦合循环作用下,MWCNTs混凝土的劣化经历了3个阶段:阶段Ⅰ侵蚀产物在混凝土内部积累;阶段Ⅱ混凝土可靠度急剧降低,混凝土内部损伤加剧导致其性能逐渐劣化;阶段Ⅲ混凝土的承载力丧失,可靠度为0.模型反映的变化趋势与试验中混凝土的性能劣化过程相吻合.
(3)由本文建立的可靠度函数得出在硫酸盐侵蚀与冻融循环耦合作用下,当MWCNTs掺量为0.05%混凝土的可靠度降为0时,其盐冻耦合循环次数长达900次,为MWCNTs混凝土在西北盐湖地区进行大规模应用提供了理论依据.
参考文献
张学鹏, 张戎令, 王小平, 等. 基于Wiener过程理论的盐渍土中混凝土损伤演化及寿命预测[J]. 建筑材料学报, 2023, 26(11):1192‑1199, 1206. [百度学术]
ZHANG Xuepeng, ZHANG Rongling, WANG Xiaoping, et al. Damage evolution and life prediction of concrete in saline soil based on Wiener process theory[J]. Journal of Building Materials, 2023, 26(11):1192‑1199, 1206. (in Chinese) [百度学术]
GAO F F, TIAN W, WANG Y W, et al. Effect of the dosage of MWCNTs on deterioration resistant of concrete subjected to combined freeze‑thaw cycles and sulfate attack[J]. Structural Concrete, 2021, 22(S1):E955‑E965. [百度学术]
乔宏霞, 冯琼, 朱彬荣, 等. 西部地区混凝土基于Weibull分布的寿命预测研究[J]. 应用基础与工程科学学报, 2020, 28(4):993‑1005. [百度学术]
QIAO Hongxia, FENG Qiong, ZHU Binrong, et al. Study of lifetime prediction of concrete in western region based on Weibull distribution[J]. Journal of Basic Science and Engineering, 2020, 28(4):993‑1005. (in Chinese) [百度学术]
程子扬, 陈国夫, 屠艳平. 纳米CaCO3对粉煤灰再生骨料混凝土性能及微结构的影响[J]. 建筑材料学报, 2023, 26(3):228‑235. [百度学术]
CHENG Ziyang, CHEN Guofu, TU Yanping. Effect of nano CaCO3 on properties and microstructure of fly ash recycled aggregate concrete[J]. Journal of Building Materials, 2023, 26(3):228‑235. (in Chinese) [百度学术]
徐阳晨, 邢国华, 黄娇, 等. 聚乙烯醇纤维和碳纳米管改性对混凝土力学性能的影响[J]. 建筑材料学报, 2023, 26(7):809‑815, 822. [百度学术]
XU Yangchen, XING Guohua, HUANG Jiao, et al. Effect of PVA fiber and carbon nanotubes modification on mechanical properties of concrete[J]. Journal of Building Materials, 2023, 26(7):809‑815, 822. (in Chinese) [百度学术]
牛荻涛, 何嘉琦, 傅强, 等. 碳纳米管对水泥基材料微观结构及耐久性能的影响[J]. 硅酸盐学报, 2020, 48(5):705‑717. [百度学术]
NIU Ditao, HE Jiaqi, FU Qiang, et al. Effect of carbon nanotubes on microstructure and durability of cement‑based materials[J]. Journal of the Chinese Ceramic Society, 2020, 48(5):705‑717. (in Chinese) [百度学术]
AZHARI F, BANTHIA N. Cement‑based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing[J]. Cement and Concrete Composites, 2012, 34 (7):866‑873. [百度学术]
GAO F F, TIAN W, WANG Z, et al. Effect of diameter of multi‑walled carbon nanotubes on mechanical properties and microstructure of the cement‑based materials[J]. Construction and Building Materials, 2020, 260:120452. [百度学术]
WANG H, GAO X J, LIU J Z. Effects of salt freeze‑thaw cycles and cyclic loading on the piezoresistive properties of carbon nanofibers mortar[J]. Construction and Building Materials, 2018, 177:192‑201. [百度学术]
田威, 高芳芳, 贺礼. 高温后碳纳米管混凝土力学性能及细观结构变化[J]. 浙江大学学报(工学版), 2022, 56(11):2280‑2289. [百度学术]
TIAN Wei, GAO Fangfang, HE Li. Variation of mechanical property and meso structure of MWCNTs concrete exposed to high temperature[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(11):2280‑2289. (in Chinese) [百度学术]
杨冬鹏, 郭卫民, 王宝民. 基于Weibull模型的混凝土冻融损伤寿命预测及应用[J]. 水利学报, 2022, 53(8):977‑983. [百度学术]
YANG Dongpeng, GUO Weimin, WANG Baomin. Prediction and application of freezing‑thawing damage life of concrete based on Weibull model[J]. Journal of Hydraulic Engineering, 2022, 53(8):977‑983. (in Chinese) [百度学术]
乔宏霞, 郭向柯, 朱彬荣. 三参数Weibull分布的多因素作用下混凝土加速寿命试验[J]. 材料导报, 2019, 33(2):639‑643. [百度学术]
QIAO Hongxia, GUO Xiangke, ZHU Binrong. Accelerated life test of concrete under multiple factors based on three‑parameter Weibull distribution[J]. Materials Reports, 2019, 33(2):639‑643. (in Chinese) [百度学术]
CHEN F L, QIAO P Z. Probabilistic damage modeling and service‑life prediction of concrete under freeze‑thaw action [J]. Materials and Structures, 2015, 48(8):2697‑2711. [百度学术]
路承功. 西北盐渍环境下混凝土结构材料耐久性试验研究及寿命预测与评估[D]. 兰州:兰州理工大学, 2022. [百度学术]
LU Chenggong. Durability test research and life prediction and evaluation of concrete structural materials in the saline environment of northwest China[D]. Lanzhou:Lanzhou University of Technology, 2022. (in Chinese) [百度学术]
路承功, 魏智强, 乔宏霞, 等. 盐渍土地区混凝土加速寿命试验可靠性分析方法[J]. 中南大学学报(自然科学版), 2021, 52(3):1017‑1026. [百度学术]
LU Chenggong, WEI Zhiqiang, QIAO Hongxia, et al. Reliability analysis method of accelerated life test of concrete in saline soil area[J]. Journal of Central South University (Science and Technology), 2021, 52(3):1017‑1026. (in Chinese) [百度学术]
NAQI A, ABBAS N, ZAHRA N, et al. Effect of multi‑walled carbon nanotubes (MWCNTs) on the strength development of cementitious materials[J]. Journal of Materials Research and Technology, 2019, 8(1):1203‑1211. [百度学术]
NALON G H, RIBEIRO J C L, DE ARAÚJO E N D, et al. Residual mechanical properties of mortars containing carbon nanomaterials exposed to high temperatures[J]. Construction and Building Materials, 2021, 275:122123. [百度学术]
XU S L, LIU J T, LI Q H. Mechanical properties and microstructure of multi‑walled carbon nanotube‑reinforced cement paste[J]. Construction and Building Materials, 2015, 76:16‑23. [百度学术]
LU L L, OUYANG D, XU W T. Mechanical properties and durability of ultra high strength concrete incorporating multi‑walled carbon nanotubes[J]. Materials, 2016, 9(6):419‑421. [百度学术]
CUI H Z, YANG S Q, MEMON S A. Development of carbon nanotube modified cement paste with microencapsulated phase‑change material for structural‑functional integrated application[J]. International Journal of Molecular Sciences, 2015, 16(4):8027‑8039. [百度学术]
RAMEZANI M, KIM Y H, SUN Z H, et al. Influence of carbon nanotubes on properties of cement mortars subjected to alkali‑silica reaction[J]. Cement and Concrete Composites, 2022, 131:104596. [百度学术]
RAMEZANI M, KIM Y H, SUN Z H. Modeling the mechanical properties of cementitious materials containing CNTs[J]. Cement and Concrete Composites, 2019, 104:103347. [百度学术]
RAMEZANI M, KIM Y H, SUN Z H. Elastic modulus formulation of cementitious materials incorporating carbon nanotubes:Probabilistic approach[J]. Construction and Building Materials, 2021, 274:122092. [百度学术]
陈守开, 陈家林, 汪伦焰, 等. 再生骨料透水混凝土关键性能统计及预测分析[J]. 建筑材料学报, 2019, 22(2):214‑221. [百度学术]
CHEN Shoukai, CHEN Jialin, WANG Lunyan, et al. Key performance statistics of recycled aggregate pervious concrete and prediction analysis[J]. Journal of Building Materials, 2019, 22(2):214‑221. (in Chinese) [百度学术]
李刊, 魏智强, 乔宏霞, 等. 耦合盐溶液环境下钢筋/混凝土Weibull耐久性寿命预测方法[J]. 复合材料学报, 2021, 38(7):2370‑2382. [百度学术]
LI Kan, WEI Zhiqiang, QIAO Hongxia, et al. Weibull durability life prediction method of reinforced concrete in environment of coupled salt solution[J]. Acta Materiae Compositae Sinica, 2021, 38(7):2370‑2382. (in Chinese) [百度学术]
罗遥凌, 王冲, 彭小芹, 等. 电场及低温环境下不同镁盐和硫酸盐组合对水泥基材料碳硫硅钙石侵蚀的影响[J]. 建筑材料学报, 2016, 19(6):998‑1003, 1012. [百度学术]
LUO Yaoling, WANG Chong, PENG Xiaoqin, et al. Effect of different magnesium salts and sulfates on thaumasite sulfate attack of cement‑based materials under electrical field and low temperature [J]. Journal of Building Materials, 2016, 19(6):998‑1003, 1012. (in Chinese) [百度学术]