摘要
研究了水泥基材料碳化沉积物在孔隙结构的填充位置,分析了碳化对孔径分布及渗透速率的影响,同时基于复合概率孔径分布构建了碳化后水泥基材料非线性孔径分布转化模型和渗透速率预测模型,并通过试验数据对模型进行了验证.结果表明:在综合考虑碳化后孔隙率和孔径分布变化的情况下,渗透速率的预测精度可得到提升;碳化时孔饱和度的变化可改变碳化沉积物在孔隙结构中的填充位置,进而导致碳化后孔径分布和渗透速率的差异;相较于单一孔隙密实过程,迭代密实过程中水泥基材料渗透速率的下降率有所减缓.
为应对全球气候变化,减少大气中的CO2,水泥生产过程中排放的大量CO2是需要解决的关键挑战之
水泥基材料的碳化过程是CO2与Ca(OH)2、水化硅酸钙(C‑S‑H)凝胶等含水化物质反应,在孔隙结构中形成CaCO3等沉淀的复杂物理化学过
数值研究具有耗时少、精度高和成本低等优势,是研究碳化对水泥基材料孔隙分布和渗透速率影响的潜在方
水泥基材料的孔隙大小跨越纳米到微米多个量级,是一种复杂的非均质结
(1) |
(2) |
式中:和分别为碳化前初始孔径分布的概率密度、累计分布函数;为孔隙半径;为位置参数;为形状参数;为碳化前水泥基材料的初始总孔隙率(体积分数);分别为最小孔径和最大孔径,依据Li
按孔隙大小和孔隙位置的差异性,水泥基材料的孔隙结构可进一步划分为C‑S‑H中的凝胶孔、凝胶粒间隙构成的小毛细孔和水化产物间隙构成的大毛细孔3
(3) |
式中:,分别为凝胶孔、小毛细孔和大毛细孔3类孔隙;为不同孔隙初始孔径分布的概率密度;为不同孔隙的初始孔隙率占比,,为不同孔隙的孔隙率.
复合概率孔径分布见

图1 复合概率孔径分布
Fig.1 Multi‑modal lognormal pore size distribution
参照Jiang

图2 水泥基材料非饱和孔隙结构示意图
Fig.2 Schematic of unsaturated pore structure of cementitious materials
(4) |
碳化反应是一种复杂的物理化学过
碳化后孔隙结构转化示意图见

图3 碳化后孔隙结构转化示意图
Fig.3 Schematic of transformed pore structure after carbonation
若碳化后水泥基材料孔隙率为,孔径分布概率为,各孔隙所对应的初始分布概率密度在碳化后发生转化:
(5) |
式中:不同孔隙的孔径分布转化函数.
表示碳化后半径为的孔径占比增多;表示占比不变;表示占比减小.假设凝胶孔、小毛细孔和大毛细孔在碳化后的孔隙密实量与其初始孔隙率占比正相关,则有:
(6) |
考虑到钙溶蚀发生在水分填充的孔隙中,而气态CO2传输发生在非饱和孔隙中,因此,气-液界面可认为是CO2溶解和离子发生反应沉淀的首要位
基于以上分析,考虑到初始孔径分布满足对数正态分布,需要保证,且在处取最小值,本文提出了一种非线性孔径分布转化模型:
(7) |
式中:为转化修正系数,.
在某一饱和度下,为已知量,将式(7)带入式(6),可求解每一孔径分布对应的和.非线性孔径分布转化预测模型的验证见后文.
水泥基材料孔隙结构的大小及分布会显著影响材料的传输性能,进而影响由水分和气体传输过程控制的碳化速率.基于复合概率孔径分布模型,碳化前后水泥基材料的固有渗透速率、
(8) |
(9) |
式中:和分别为碳化前后孔隙结构的曲折度,基于孔隙率,其计算
水泥基材料的水分渗透速率、气体渗透速率和固有渗透速率是表征其渗透性能的关键指标.水分渗透速率反映水分通过材料孔隙结构的流动能力,主要用于评价材料的抗水侵性能.气体渗透速率则描述气体在材料中的渗透行为,常用于评估材料的耐久性和抗碳化性能.固有渗透速率作为更为基础的属性参数,表征材料对任何流体渗透的内在抵抗能力,仅与材料本身的孔隙特征有关.
以碳化前的孔隙结构为例,在不同饱和度下,渗透速率的计算可分为:(1)当孔隙结构完全干燥,孔隙被气态物质完全填充,渗透速率等同于气体固有渗透速率;(2)当孔隙结构处于非饱和状态时,r<的孔隙将被水分填充,而r>的孔隙保持干燥,此时水分渗透速率和气体渗透速率可由式(10)计算;(3)当孔隙结构完全饱和时,孔隙则会被液态水完全填充,渗透速率等同于水分固有渗透速率.
(10) |
气体和水分固有渗透速率预测公式的推导和验证过程可参考笔者之前的研
为验证模型的适用性,本节将模型结果与第三方试验数据进行对比分析.验证共分为两部分:(1)基于复合概率孔径分布模型碳化后非线性孔径分布转化模型的验证;(2)基于转化后孔径分布渗透速率预测模型的验证.
采用水泥砂浆,设置温度为25 ℃,水胶比(质量比)为0.45~0.75.水泥基材料碳化试验参数见
Specimen | Cement | w(CO2)/% | c(CO2)/(mol· | S/% | /% | /% | Ref. | |
---|---|---|---|---|---|---|---|---|
M45 | OPC 52.5 | 0.45 | 0.22 | 100 | 14.52 | 13.05 |
[ | |
M55 | OPC 52.5 | 0.55 | 0.22 | 100 | 17.58 | 15.73 |
[ | |
M75‑1 | CEM I | 0.75 | 3.1 | 57 | 16.10 | 13.20 |
[ | |
M75‑2 | CEM II | 0.75 | 3.1 | 57 | 18.60 | 17.20 |
[ | |
M75‑3 | CEM IV | 0.75 | 3.1 | 57 | 17.10 | 16.50 |
[ |
通过低场核磁共振技术(LF‑NMR)或压汞试验(MIP)测试了碳化前后水泥基材料的孔径分布,基于复合概率密度拟合得到其初始孔径分布,结果见
Specimen | Method | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
M45 | LF‑NMR | 1.00 | 1.64 | 1.13 | 0.988 | ||||||
M55 | LF‑NMR | 1.00 | 1.74 | 1.11 | 0.982 | ||||||
M75‑1 | MIP | 0.36 | 5.11 | 1.29 | 0.64 | 6.28 | 0.52 | 0.859 | |||
M75‑2 | MIP | 0.42 | 4.59 | 1.14 | 0.58 | 5.97 | 0.35 | 0.859 | |||
M75‑3 | MIP | 0.34 | 3.98 | 1.29 | 0.66 | 4.21 | 0.42 | 0.928 |
已知碳化前的初始孔径分布、碳化时的饱和度以及碳化后孔隙率变化等信息,仍需要确定式(7)中转化修正系数的值才能对碳化后水泥基材料的孔径分布进行预测.为此,选取不同转化系数来预测试件M45的孔径分布,并与试验数据进行对比,结果见

图4 试件M45孔径分布的试验数据与选取不同转化修正系数后的预测结果对比
Fig.4 Comparison of measured data and predicted results of pore size distribution of specimen M45 with different correction factors
基于以上初始分布拟合和转化修正参数的选取,预测得到水泥基材料的孔径分布,并与其试验数据进行对比,结果见

图5 水泥基材料孔径分布的试验数据与预测结果对比
Fig.5 Comparison of measured data and predicted results of pore size distribution of cementitious materials
基于拟合得到的碳化前孔径分布和预测得到的碳化后孔径分布,用式(8)、(9)可计算碳化前后水泥基材料的固有渗透速率,并与试验数据进行对比,结果见

图6 碳化前后水泥基材料固有渗透速率的试验数据与预测结果对比
Fig.6 Comparison of measured data and predicted results of intrinsic permeability of cementitious materials before and after carbonation
综上,本文提出的非线性孔径分布转化模型可较好地预测碳化沉积导致的孔径分布,并提高渗透速率预测模型的精度.
基于复合概率孔径分布转化模型和渗透速率预测模型,本节将进一步探究碳化条件(饱和度)、碳化程度(孔隙率的变化量)对水泥基材料孔径分布以及水分渗透速率的影响.假定水泥基材料的初始孔隙率0为20%,初始孔径分布参数为:.
当水泥基材料发生碳化反应时,不同的饱和度对应不同的临界孔径(见式(4)).此时,即使水泥基材料碳化后孔隙率的变化量相同,不同的临界孔径将影响碳化沉积物在孔隙结构中的填充位置,进而导致碳化后孔径分布的不同.
基于非线性孔径分布转化模型,不同饱和度下孔隙率变化相同时水泥基材料孔径分布的变化见

图7 不同饱和度下孔隙率变化相同时水泥基材料孔径分布的变化
Fig.7 Changes in pore size distribution of cementitious materials at different saturation with the same porosity reduction
基于

图8 水泥基材料固有渗透速率预测值
Fig.8 Predicted intrinsic permeability of cementitious materials
但需要注意的是,实际上饱和度对碳化速率的影响具有二重性,不同饱和度下碳化得到的孔隙率变化不同.过低的饱和度会降低离子的化学反应速率,而过高的饱和度会阻碍气态CO2在孔隙结构中的传输,最优碳化饱和度为50%~70
除连续碳化过程造成水泥基材料孔径分布的一次转化外,现实中的碳化过程也可能间断发生.如混凝土经历往复干湿循环,当混凝土完全饱和时,碳化反应将暂停,而当混凝土重新干燥时,碳化反应继续发生.在这种情况下,碳化导致的孔径分布转化需要进行迭代转化,即新一次的孔径转化需在前一次转化的孔径分布基础上进行.
保持饱和度为80%,不同碳化程度下孔隙率从20%降低至15%时进行单一或迭代转化,得到不同孔隙率变化下饱和度相同时水泥基材料的孔径分布转化,结果见

图9 不同孔隙率变化下饱和度相同时水泥基材料的孔径分布转化
Fig.9 Transformation of pore size distribution of cementitious materials at the same saturation under different porosity reductions
不同转化方式下固有渗透速率预测值见

图10 不同转化方式下水泥基材料固有渗透速率预测值
Fig.10 Predicted intrinsic permeability of cementitious materials corresponding to different transformed methods
(1)假设水泥基材料碳化产生的沉积物集中于临界孔径附近,基于复合概率孔径分布,本文提出的非线性孔径分布转化模型可以较好地预测碳化后水泥基材料的孔径分布.综合考虑孔隙率和孔径分布,碳化前后固有渗透速率的预测精度将有所提升.
(2)水泥基材料中不同饱和度的孔隙结构对应不同的临界孔径.即使水泥基材料碳化后孔隙率的变化量相同,不同临界孔径也会影响碳化沉积物在孔隙结构中的填充位置,进而导致碳化后孔径分布和渗透速率不同.当大孔隙被碳化密实的占比增加,碳化后固有渗透速率降低.
(3)当保持饱和度恒定不变时,单一或迭代转化后,水泥基材料的孔径分布有显著差异.相较于单一转化,迭代转化孔径分布对应的固有渗透速率下降幅度逐渐减小.
参考文献
SHEN X H, LIU Q F, HU Z, et al. Combine ingress of chloride and carbonation in marine‑exposed concrete under unsaturated environment: A numerical study[J]. Ocean Engineering, 2019, 189:106350. [百度学术]
LIU Q F. Progress and research challenges in concrete durability:Ionic transport, electrochemical rehabilitation and service life prediction[J]. RILEM Technical Letters, 2022, 7:98‑111. [百度学术]
莫媛媛, 唐薇, 占宝剑, 等. 碳化再生微粉水泥基材料的性能及其碳足迹评价[J]. 建筑材料学报, 2023, 26(11):1207‑1213. [百度学术]
MO Yuanyuan, TANG Wei, ZHAN Baojian, et al. Performance and carbon footprint evaluation of cement‑based materials incorporating carbonated recycled fine powder[J]. Journal of Building Materials, 2023, 26(11):1207‑1213. (in Chinese) [百度学术]
ZHANG D, GHOULEH Z, SHAO Y X. Review on carbonation curing of cement‑based materials[J]. Journal of CO2 Utilization, 2017, 21:119‑131. [百度学术]
NIELSEN P, BOONE M A, HORCKMANS L, et al. Accelerated carbonation of steel slag monoliths at low CO2 pressure‑microstructure and strength development[J]. Journal of CO2 Utilization, 2020, 36:124‑134. [百度学术]
LIU P, YU Z W, CHEN Y. Carbonation depth model and carbonated acceleration rate of concrete under different environment[J]. Cement and Concrete Composites, 2020, 114:103736. [百度学术]
童良玉, 刘清风. 考虑多尺度非均质性的混凝土传输性能预测模型[J]. 建筑材料学报, 2023, 26(10):1062‑1071. [百度学术]
TONG Liangyu, LIU Qingfeng. Modelling of concrete transport property by considering multi‑scale heterogeneous characteristics[J]. Journal of Building Materials, 2023, 26(10):1062‑1071. (in Chinese) [百度学术]
AUROY M, POYET S, LE BESCOP P, et al. Impact of carbonation on unsaturated water transport properties of cement‑based materials[J]. Cement and Concrete Research, 2015, 74:44‑58. [百度学术]
MENG Z Z, ZHANG Y, CHEN W K, et al. A numerical study of moisture and ionic transport in unsaturated concrete by considering multi‑ions coupling effect[J]. Transport in Porous Media, 2024, 151(2):339‑366. [百度学术]
何娟, 杨长辉. 碳化对碱矿渣水泥浆体微观结构的影响[J]. 建筑材料学报, 2012, 15(1):126‑130. [百度学术]
HE Juan, YANG Changhui. Influence of carbonation on microstructure of alkali‑activated slag cement pastes[J]. Journal of Building Materials, 2012, 15(1):126‑130. (in Chinese) [百度学术]
PATEL R A, CHURAKOV S V, PRASIANAKIS N I. A multi‑level pore scale reactive transport model for the investigation of combined leaching and carbonation of cement paste[J]. Cement and Concrete Composites, 2021, 115:103831. [百度学术]
冷勇, 余睿, 范定强, 等. 碳化再生粗骨料环保型超高性能混凝土的制备[J]. 建筑材料学报, 2022, 25(11):1185‑1189, 1218. [百度学术]
LENG Yong, YU Rui, FAN Dingqiang, et al. Preparation of environmentally friendly UHPC containing carbonized recycled coarse aggregate[J]. Journal of Building Materials, 2022, 25(11):1185‑1189, 1218. (in Chinese) [百度学术]
高轩, 刘清风. 水泥浆-骨料界面过渡区微观特征的数值研究[J/OL]. 建筑材料学报, 2024:1‑15 [20240531].http://kns.cnki.net/kcms/detail/31.1764.TU.20231211.1514.006.html. [百度学术]
GAO Xuan, LIU Qingfeng. Numerical study on microscopic characteristics of the interfacial transition zone between cement paste and aggregate[J/OL]. Journal of Building Materials, 2024:1‑15[20240531]. http://kns.cnki.net/kcms/detail/31.1764.TU.20231211.1514.006.html.(in Chinese) [百度学术]
TONG L Y, CAI Y, LIU Q F. Carbonation modelling of hardened cementitious materials considering pore structure characteristics:A review[J]. Journal of Building Engineering, 2024, 96: 110547. [百度学术]
张庆章, 方燕, 宋力, 等. 混凝土孔结构及其分形维数与氯离子扩散性能的关系[J]. 硅酸盐通报, 2022, 41(8):2716‑2727. [百度学术]
ZHANG Qingzhang, FANG Yan, SONG Li, et al. Relationship between pore structure,fractal dimension and chloride diffusion performance of concrete[J]. Bulletion of the Chinese Ceramic Society, 2022, 41(8):2716‑2727. (in Chinese) [百度学术]
LIU Q F, HU Z, WANG X E, et al. Numerical study on cracking and its effect on chloride transport in concrete subjected to external load[J]. Construction and Building Materials, 2022, 325:126797. [百度学术]
MAEKAWA K, ISHIDA T, KISHI T. Multi‑scale modeling of concrete performance integrated material and structural mechanics[J]. Journal of Advanced Concrete Technology, 2003, 1(2):91‑126. [百度学术]
LU C S, DANZER R, FISCHER F D. Fracture statistics of brittle materials:Weibull or normal distribution[J]. Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2002, 65(6):067102. [百度学术]
SHI D X, BROWN P W, MA W P. Lognormal simulation of pore size distributions in cementitious materials[J]. Journal of the American Ceramic Society, 1991, 74(8):1861‑1867. [百度学术]
HOU D W, LI D Y, HUA P C, et al. Statistical modelling of compressive strength controlled by porosity and pore size distribution for cementitious materials[J]. Cement and Concrete Composites, 2019, 96:11‑20. [百度学术]
SHI D X, MA W P, BROWN P W. Lognormal simulation of pore evolution during cement and mortar hardening[J]. MRS Online Proceedings Library, 1989, 176(1):143. [百度学术]
LI L Y. A pore size distribution‑based chloride transport model in concrete[J]. Magazine of Concrete Research, 2014, 66(18):937‑947. [百度学术]
ACHOUR M, BIGNONNET F, BARTHÉLÉMY J F, et al. Multi‑scale modeling of the chloride diffusivity and the elasticity of Portland cement paste[J]. Construction and Building Materials, 2020, 234:117124. [百度学术]
HUANG Q H, JIANG Z L, GU X L, et al. Numerical simulation of moisture transport in concrete based on a pore size distribution model[J]. Cement and Concrete Research, 2015, 67:31‑43. [百度学术]
JIANG Z L, XI Y P, GU X L, et al. Modelling of water vapour sorption hysteresis of cement‑based materials based on pore size distribution[J]. Cement and Concrete Research, 2019, 115:8‑19. [百度学术]
XIONG Q X, MEFTAH F. Determination on pore size distribution by a probabilistic porous network subjected to salt precipitation and dissolution[J]. Computational Materials Science, 2021, 195:110491. [百度学术]
童良玉, 刘清风. 考虑时变孔隙结构的非饱和混凝土扩散性能预测模型[J]. 硅酸盐学报, 2023, 51(8):1950‑1961. [百度学术]
TONG Liangyu, LIU Qingfeng. Prediction model for diffusivity of unsaturated concrete by considering time‑varying pore structure[J]. Journal of the Chinese Ceramic Society, 2023, 51(8), 1950‑1961. (in Chinese) [百度学术]
ZHANG Y, YANG Z X, YE G. Dependence of unsaturated chloride diffusion on the pore structure in cementitious materials[J]. Cement and Concrete Research, 2020, 127:105919. [百度学术]
ZHANG Y, YE G. A model for predicting the relative chloride diffusion coefficient in unsaturated cementitious materials[J]. Cement and Concrete Research, 2019, 115:133‑144. [百度学术]
LIU C, ZHANG M Z. Multiscale modelling of ionic diffusivity in unsaturated concrete accounting for its hierarchical microstructure[J]. Cement and Concrete Research, 2022, 156:106766. [百度学术]
STEINER S, LOTHENBACH B, PROSKE T, et al. Effect of relative humidity on the carbonation rate of portlandite, calcium silicate hydrates and ettringite[J]. Cement and Concrete Research, 2020, 135:106116. [百度学术]
ŠAVIJA B, LUKOVIĆ M. Carbonation of cement paste:Understanding, challenges, and opportunities[J]. Construction and Building Materials, 2016, 117:285‑301. [百度学术]
司秀勇, 户伟华, 潘慧敏. 矿物掺合料混凝土抗碳化性能及预测模型[J]. 混凝土, 2024(1):17‑20, 27. [百度学术]
SI Xiuyong, HU Weihua, PAN Huimin. Carbonation resistance and prediction model of mineral admixture concrete[J]. Concrete, 2024(1):17‑20, 27. (in Chinese) [百度学术]
TONG L Y, XIONG Q X, ZHANG Z D, et al. A novel lattice model to predict chloride diffusion coefficient of unsaturated cementitious materials based on multi‑typed pore structure characteristics[J]. Cement and Concrete Research, 2024, 176:107351. [百度学术]
MENG Z Z, LIU Q F, XIA J, et al. Mechanical‑ transport‑chemical modeling of electrochemical repair methods for corrosion‐induced cracking in marine concrete[J]. Computer‐Aided Civil and Infrastructure Engineering, 2022, 37(14):1854‑1874. [百度学术]
KADDAH F, RANAIVOMANANA H, AMIRI O, et al. Accelerated carbonation of recycled concrete aggregates:Investigation on the microstructure and transport properties at cement paste and mortar scales[J]. Journal of CO2 Utilization, 2022, 57:101885. [百度学术]
XIONG Q X, TONG L Y, ZHANG Z, et al. A new analytical method to predict permeability properties of cementitious mortars:The impacts of pore structure evolutions and relative humidity variations[J]. Cement and Concrete Composites, 2023, 137:104912. [百度学术]
XIONG Q X, TONG L Y, MEFTAH F, et al. Improved predictions of permeability properties in cement‑based materials:A comparative study of pore size distribution‑based models[J]. Construction and Building Materials, 2024, 411:133927. [百度学术]
REN F Z, CHEN X Y, ZENG Q, et al. Effects of pure carbonation on pore structure and water permeability of white cement mortars[J]. Cement, 2022, 9:100040. [百度学术]
HREN M, BOKAN BOSILJKOV V, LEGAT A. Effects of blended cements and carbonation on chloride‑induced corrosion propagation[J]. Cement and Concrete Research, 2021, 145:106458. [百度学术]