摘要
为研究水胶比对碱激发矿渣早期反应动力学的影响,采
矿渣是一种活性矿物材料,与普通硅酸盐水泥相比,矿渣的生产具有低能耗和低CO2排放量等特
水是矿渣碱激发过程的重要组成部分,其在反应过程中的动态转变是碱激发产物生成的重要表现之一. 在矿渣溶解阶段,水作为反应介质促进了Ca、Si、Al的溶出;在碱激发反应阶段,部分水参与反应并存在于碱激发产物
目前,LF‑NMR主要用来研究碱激发剂种类与模数对碱激发矿渣早期反应动力学的影响,而不同水胶比下碱激发矿渣早期反应动力学的研究还未见报道. Cong
综上所述,为明晰水胶比对碱激发矿渣早期反应动力学的影响,揭示水的相关作用机理,本文研究了碱激发矿渣浆体前3 d的T2值与不同状态水的相对含量变化,并通
矿渣为山西龙辉建材有限公司生产的S95级粒化高炉矿渣,其化学组成(质量分数,文中涉及的组成、水胶比除特别说明外均为质量分数或质量比)如
SiO2 | Al2O3 | CaO | MgO | SO3 | Fe2O3 | Other |
---|---|---|---|---|---|---|
34.50 | 17.70 | 34.00 | 6.01 | 1.64 | 1.03 | 5.12 |

图1 矿渣的SEM照片和XRD图谱
Fig.1 SEM image and XRD pattern of slag
Specimen | Mix proportion/g | mW/mB | |||
---|---|---|---|---|---|
Slag | Na2SiO3 | NaOH | Water | ||
1 | 100.00 | 27.89 | 3.06 | 23.27 | 0.40 |
2 | 100.00 | 31.47 | 3.45 | 26.25 | 0.45 |
3 | 100.00 | 34.97 | 3.83 | 29.17 | 0.50 |
首先,按照
采用苏州纽迈公司生产的MacroMR12—150H—I型LF‑NMR成像仪测试碱激发浆体内的水分分布. 采用CPMG (Carr‑Purcell‑Meiboom‑Gill)回波数列测试得到碱激发矿渣浆体的T2值,并使用SIRT反演程序进行反演,等待时间为1 500 ms,回波个数为2 000,中心频率为12 MHz,共振频率为12.78 MHz,累加次数为32次,采样个数为200个,环境温度为(26±2) ℃,磁体温度为32.0 ℃.
采用美国布鲁克公司生产的Advance III HD 600WB 型魔角自旋核磁共振分析仪对干燥的固体矿渣粉末进行魔角自旋核磁共振测试. 具体参数如下:转子型号为外径4 mm的ZrO2转子,探头型号为固体双共振探头,旋转速率为8 kHz,采样时间为0.02 s,循环延迟时间10 s,扫描次数为320次,接触时间为2 ms,实验室温度为298 K.
采用美国TA公司生产的TAM Air 8型通道微量热仪在(20.0±0.2) ℃下恒温测试矿渣的碱激发反应放热量及放热速率. 在添加碱激发剂前先将高炉矿渣均质化30 s,然后按照
采用美国TA TGA55型热重分析仪对碱激发矿渣试样进行热重分析测试. 综合热分析温度区间为30~800 ℃,试验气氛为O2,升温速率为10 ℃/min.
采用美国Thermo Scientific Nicolet iS20型FTIR测试碱激发矿渣试样的官能团,分辨率为4 c
研究表明

图2 矿渣浆体的T2分布
Fig.2 T2 distributions of slag pastes
(1)不同mW/mB下碱激发矿渣T2值的分布基本一致,在0.01~10 000.00 ms范围内均显示出显著的单峰分布,与文献[
(2)随着碱激发反应时间的延长,T2值与信号峰峰值逐渐减小,这表明碱激发矿渣浆体随着时间的延长,内部结构发生了不可逆的构建过程. 值得注意的是,当mW/mB=0.45的碱激发矿渣浆体反应进行到1 h时,峰值对应的T2值最接近1.00 ms,为1.05 ms. 这可能是由于矿渣溶解阶段水作为反应介质,促进了矿渣中C
另外,通过对比发现碱激发时间在前30 min时mW/mB=0.50的浆体出现T2>10 ms的信号. 这可能是由于新鲜状态下碱激发矿渣浆体可以简化为水和粉末组成的悬浮体系,而矿渣微粉的粒径较小,在悬浮浆体中易形成含有大量气孔的絮凝结构,mW/mB较大时提供了更多的自由水吸附在矿渣絮凝结构上,导致出现T2>10 ms的信号.
下面以mW/mB=0.45为例对矿渣3 d内的碱激发过程进行分析. 从
(1)当碱激发5 min时,峰值变化较不明显,且峰值对应的T2值均在1.00 ms右侧,这是由于矿渣粉末粒径较小,在悬浮浆体中形成了较多含有气孔的絮凝结构,此时T2值表示絮凝结构中的水.
(2)当碱激发反应进行至10 min时,T2值略左移,在1.00 ms左侧监测到较小强度的T2值.这可能是由于矿渣中Ca—O键能最小,首先从矿渣中溶出,与碱激发剂中的硅酸根离子反应生成水化硅酸钙(C‑S‑H)凝胶,使得T2值减小.但是根据电荷平衡与扩散原理,此时生成的C‑S‑H凝胶将向碱溶液中扩散,可能使T2值减小得不那么明显.
(3)当碱激发反应进行至30 min与1 h时,T2值显著减小,然而峰值变化不明显. 这可能是由于矿渣颗粒在O
(4)从1 h进一步碱激发至2 h时,发现峰值对应的T2值已经小于1.00 ms,且在碱激发2 h以后T2值峰值迅速降低. 表明大部分水变为不可动水,此时矿渣碱激发程度已经很高. 这主要是由于随着反应的进行,部分可动水被凝胶中的纳米空间所包裹,被称为“纳米孔中的水”(T2与孔径大小密切相关,孔径越小,固体表面对水的束缚程度越大,T2值越小,反之越大),导致T2值显著减
通常,根据不动水与可动水的相对含量,可以在一定程度上判断碱激发矿渣浆料的反应程
Type | mW/mB | Water content/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 min | 5 min | 10 min | 30 min | 1 h | 2 h | 6 h | 10 h | 1 d | 2 d | 3 d | |||
Immovable water | 0.40 | 0.60 | 0.22 | 4.20 | 25.40 | 46.50 | 62.90 | 71.20 | 72.70 | 74.10 | 75.10 | 75.50 | |
0.45 | 0.20 | 0.60 | 2.90 | 21.10 | 45.90 | 62.30 | 70.20 | 70.30 | 70.60 | 71.50 | 75.90 | ||
0.50 | 0.08 | 0.50 | 0.90 | 18.20 | 45.10 | 62.10 | 68.20 | 70.10 | 71.20 | 72.30 | 71.30 | ||
Mobile water | 0.40 | 99.40 | 99.78 | 95.80 | 74.60 | 53.50 | 37.10 | 28.80 | 27.30 | 25.90 | 24.90 | 24.50 | |
0.45 | 99.80 | 99.40 | 97.10 | 78.90 | 54.10 | 37.70 | 29.80 | 29.70 | 29.40 | 28.50 | 24.10 | ||
0.50 | 99.92 | 99.50 | 99.10 | 81.80 | 54.90 | 37.90 | 31.80 | 29.90 | 28.80 | 27.70 | 28.70 |
由于C‑A‑S‑H凝胶的结晶度较低,传统的粉末技术对其进行定量结构分析有着较大挑战,而固体核磁共振往往能带来更多局部结构的细节. 核磁共振谱

图3 不同mW/mB下矿渣碱激发3 d时
Fig.3

图4 矿渣浆体的放热曲线
Fig.4 Heat release curves of slag pastes
(1)在开始的0.4 h内均出现了矿渣颗粒初始润湿与溶解峰,该峰既窄又高,表明矿渣的溶解速率较快,随后在较短的诱导期后进入第1加速期,这
(2)大约在1.0 h时,3种mW/mB下均出现了附加初始峰,这与文献[
(3)在1.0 h之后出现的减速峰是由于碱激发剂提供的硅酸盐与C
(4)矿渣浆体约在8.0 h时进入第2加速期,并在12.0 h附近达到加速峰峰值,表明浆体微结构中固相开始由疏松向致密化转变,这
(5)12.0 h以后进入减速期,表明矿渣的溶解与化学反应过程达到新的平衡状态.
通过对
众所周知,累计放热量可以作为评估胶凝材料反应程度的参数,一般来说,累计碱激发放热量由矿渣的溶解与碱激发产物的生成控

图5 不同mW/mB矿渣浆体碱激发2 h的TG数据
Fig.5 TG data of slag pastes with different mW/mB under 2 h of alkali‑activation

图6 矿渣浆体在不同碱激发时间下的FTIR图谱
Fig.6 FTIR spectra of slag pastes at different alkali‑activation time(mW/mB=0.45)
(1)在3 426 c
(2)在1 451 c
(3)在692 c
相关研究表明,T2值的加权平均值(T2wav)比T2谱峰值更能反应碱激发进程,且在分析不同样品的T2谱时,应考虑该样品存在的所有峰
(1) |
式中:fi为横向弛豫时间T2i时所对应的孔隙水占比.
矿渣浆体碱激发3 d时T2wav与累计放热量的比较如

图7 矿渣浆体碱激发3 d时T2wav与累计碱激发放热量的比较
Fig.7 Comparison between T2wav and cumulative heat of alkali‑activated of slag paste at alkali‑activated 3 d
为了比

图8 2种测试方法之间的关系
Fig.8 Relationship between two testing methods
(1)在碱激发反应的前10 min内,T2wav降低较慢,这与碱激发热流相对应,为矿渣的溶解过程.由于碱激发剂碱性较高且含有硅酸根离子,在反应初期就有碱激发产物的生成,使得T2wav降低.
(2)当碱激发反应进行至2 h时,T2wav迅速降低,这与碱激发放热曲线前2个放热峰相对应,促进了C‑A‑S‑H等碱激发产物的生成. 当碱激发反应进行至2~6 h时,T2wav缓慢降低,这与矿渣进入诱导期有关,与碱激发放热曲线对应良好.当碱激发反应进行至6 h~1 d时,T2wav有一个明显的下降,与矿渣进入加速期与减速期相对应.最后,当碱激发反应时间超过1 d时,矿渣的碱激发反应进入稳定期. 通过这2种测试方法的对比发现
(1)不同水胶比下,随着碱激发时间的增加,矿渣浆体的横向弛豫时间逐渐减小,可动水逐渐向不可动水转化.随着水胶比的增加,碱激发反应逐渐变缓. 另外,由于Si—OH基团进一步脱水形成新的碱激发产物,这有可能导致矿渣浆体碱激发反应5 min时出现可动水含量上升的情况.
(2)在碱激发反应前期,矿渣浆体水胶比越小,反应过程中释放的放热速率越快,累计碱激发放热量越大;在碱激发反应至约2 h之后,水胶比越小,累计碱激发放热量反而越低.在碱激发反应3 d时,随着水胶比的增加,高聚合度碱激发产物增加,这与累计碱激发放热量的结果相对应.
(3)随着碱激发时间的增加,[AlO4
参考文献
左义兵, 廖宜顺, 叶光. 盐耦合侵蚀下碱矿渣水泥相演变的热力学模拟[J]. 建筑材料学报, 2023, 26(1):7‑13. [百度学术]
ZUO Yibing, LIAO Yishun, YE Guang. Thermodynamic modelling of phase evolution in alkali‑activated slag cement upon combined attack of salts[J]. Journal of Building Materials, 2023, 26(1):7‑13. (in Chinese) [百度学术]
张勇, 方宇迟, 徐轶扬, 等. 双电层对碱矿渣胶凝材料氯离子传输的影响[J]. 建筑材料学报, 2023, 26(9):949‑954. [百度学术]
ZHANG Yong, FANG Yuchi, XU Yiyang, et al. Effect of electrical double layer on chloride transport in alkali‑activated slag cementitious materials[J]. Journal of Building Materials, 2023, 26(9):949‑954. (in Chinese) [百度学术]
李青, 姚凯, 李俊潼, 等. 氢氧化钙对碱矿渣材料硫酸盐结晶破坏的抑制机理[J]. 建筑材料学报, 2023, 26(4):437‑442. [百度学术]
LI Qing, YAO Kai, LI Juntong, et al. Inhibition mechanism of calcium hydroxide on sulfate crystallization damage of alkali‑activated slag materials[J]. Journal of Building Materials, 2023, 26(4):437‑442. (in Chinese) [百度学术]
孙振, 李亚林, 贝阳, 等. 纤维增强珊瑚骨料混凝土劈裂抗拉强度预测及特征分析[J/OL]. 应用基础与工程科学学报, 2024:1‑12[20240609]. https://link.cnki.net/urlid/11.3242.TB.20240508.1658.002. [百度学术]
SUN Zhen, LI Yalin, BEI Yang, et al. Splitting tensile strength prediction and characteristic analysis of fiber reinforced coral aggregate concrete[J/OL]. Journal of Basic Science and Engineering, 2024:1‑12[20240609]. https://link.cnki.net/urlid/11.3242.TB.20240508.1658.002.(in Chinese) [百度学术]
王永辉, 陈佩圆, 张立恒, 等. MgO/硅酸钠复合对碱矿渣水化和力学特性的影响[J]. 建筑材料学报, 2023, 26(2):186‑192. [百度学术]
WANG Yonghui, CHEN Peiyuan, ZHANG Liheng, et al. Effect of MgO/sodium silicate composite activator on hydration and mechanical properties of alkali‑activated slag materials[J]. Journal of Building Materials, 2023, 26(2):186‑192. (in Chinese) [百度学术]
ZHAG Z H, YAO X, ZHU H J, et al. Role of water in the synthesis of calcined kaolin‑based geopolymer[J]. Applied Clay Science, 2009, 43(2):218‑223. [百度学术]
王德强, 孙振平, 杨海静, 等. 质子低场核磁共振技术表征建筑石膏水化进程[J]. 建筑材料学报, 2023, 26(8):879‑885. [百度学术]
WANG Deqiang, SUN Zhenping, YANG Haijing, et al. Characterization of building gypsum hydration process by
佘安明, 马坤, 王中平, 等. 低场核磁共振低温测孔技术表征硬化水泥浆体孔结构[J]. 建筑材料学报, 2021, 24(5):916‑920. [百度学术]
SHE Anming, MA Kun, WANG Zhongping, et al. Characterization of pore structure in hardened cement paste by low field NMR cryoporometry[J]. Journal of Building Materials, 2021, 24(5):916‑920. (in Chinese) [百度学术]
ZHANG P, WANG P G, HOU D S, et al. Application of neutron radiography in observing and quantifying the time‑dependent moisture distributions in multi‑cracked cement‑based composites[J]. Cement and Concrete Composites, 2017, 78:13‑20. [百度学术]
CASLER C. Infrared thermography:A tool for locating moisture infiltration in masonry walls[J]. Concrete International, 2005, 27(8):45‑48. [百度学术]
CONG X Y, ZHOU W, GENG X R, et al. Low field NMR relaxation as a probe to study the effect of activators and retarders on the alkali‑activated GGBFS setting process[J]. Cement and Concrete Composites, 2019, 104:103399. [百度学术]
ZHANG D W, ZHAO K F, WANG D M, et al. Relationship of amorphous gel‑microstructure‑elastoviscosity properties of alkali‑activated materials fresh pastes with different Ms waterglass[J]. Construction and Building Materials, 2021, 287:123023. [百度学术]
JIANG D B, LI X G, LÜ Y, et al. Autogenous shrinkage and hydration property of alkali activated slag pastes containing superabsorbent polymer[J]. Cement and Concrete Research, 2021, 149:106581. [百度学术]
YE H L, HUANG L, CHEN Z J. Influence of activator composition on the chloride binding capacity of alkali‑activated slag[J]. Cement and Concrete Composites, 2019, 104:103368. [百度学术]
BERNAL S A, PROVIS J L, ROSE V, et al. Evolution of binder structure in sodium silicate‑activated slag‑metakaolin blends[J]. Cement and Concrete Composites, 2011, 33(1):46‑54. [百度学术]
LIU Y W, LU C F, HU X, et al. Evolution of binder structure in sodium silicate‑activated slag‑metakaolin blends[J]. Cement and Concrete Research, 2023, 174:107336. [百度学术]
LU C F, ZHANG Z H, HU J, et al. Relationship between rheological property and early age‑microstructure building up of alkali‑activated slag[J]. Composites Part B:Engineering, 2022, 247:110271. [百度学术]
LIANG G W, TAO W, SHE A M. New insights into the early‑age reaction kinetics of metakaolin geopolymer by
CAO R L, ZHANG Z H, ZHANG Y M, et al. Relaxation characteristics and state evolution of water during the early‑age reaction of alkali‑activated slag as monitored by low field nuclear magnetic resonance[J]. Composites Part B:Engineering, 2022, 242:110025. [百度学术]
姚武, 佘安明, 杨培强. 水泥浆体中可蒸发水的
YAO Wu, SHE Anming, YANG Peiqiang.
SNOECK D, PEL L, DE BELIE N. Superabsorbent polymers to mitigate plastic drying shrinkage in a cement paste as studied by NMR[J]. Cement and Concrete Composites, 2018, 93:54‑62. [百度学术]
CAO R L, ZHANG S Q, BANTHIA N, et al. Interpreting the early‑age reaction process of alkali‑activated slag by using combined embedded ultrasonic measurement, thermal analysis, XRD, FTIR and SEM[J]. Composites Part B:Engineering, 2020, 186:107840. [百度学术]
PROVIS J L, BERNAL S A. Geopolymers and related alkali‑activated materials[J]. Annual Review of Materials Research, 2014, 44:299‑327. [百度学术]
JIANG D D, ZHANG Z H, SHI C J. Evolution of silicate species from waterglass in waterglass activated slag(WAS) pastes at early age[J]. Cement and Concrete Research, 2024, 180:107513. [百度学术]
LIU C, LI Z M, NIE S, et al. Structural evolution of calcium sodium aluminosilicate hydrate (C‑(N‑)A‑S‑H) gels induced by water exposure:The impact of Na leaching[J]. Cement and Concrete Research, 2024, 178:107432. [百度学术]
SHI C J, DAY R L. A calorimetric study of early hydration of alkali‑slag cements[J]. Cement and Concrete Research, 1995, 25(6):1333‑1346. [百度学术]
BILEK V, NOVOTNY R, KOPLIK J, et al. Philosophy of rational mixture proportioning of alkali‑activated materials validated by the hydration kinetics of alkali‑activated slag and its microstructure[J]. Cement and Concrete Research, 2023, 168:107139. [百度学术]
MOHAMED R, RAZAK R A, ABDULLAH M M A B, et al. Heat evolution of alkali‑activated materials:A review on influence factors[J]. Construction and Building Materials, 2022, 314:125651. [百度学术]
SIAKATI C, DOUVALIS A P, HALLET V, et al. Influence of CaO/FeO ratio on the formation mechanism and properties of alkali‑activated Fe‑rich slags[J]. Cement and Concrete Research, 2021, 146:106466. [百度学术]
BEN HAHA M, LE SAOUT G, WINNEFELD F, et al. Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast‑furnace slags[J]. Cement and Concrete Research, 2011, 41:301‑310. [百度学术]
JOSE I E G, FUENTES A F, GOROKHOVSKY A, et al. Hydration products and reactivity of blast‑furnace slag activated by various alkalis[J]. Journal of the American Ceramic Society, 2010, 86(12):2148‑2153. [百度学术]
MOHAMMED B S, HARUNA S, WAHAB M M B A, et al. Optimization and characterization of cast in‑situ alkali‑activated pastes by response surface methodology[J]. Construction and Building Materials, 2019, 225:776‑787. [百度学术]
CAO R L, LI B G, YOU N Q, et al. Properties of alkali‑activated ground granulated blast furnace slag blended with ferronickel slag[J]. Construction and Building Materials, 2018, 192:123‑132. [百度学术]
LIU C, LIANG X H, CHEN Y, et al. Properties of alkali‑activated ground granulated blast furnace slag blended with ferronickel slag[J]. Cement and Concrete Composites, 2023, 142:105157. [百度学术]
GHORBANI S, STEFANINI L, SUN Y B, et al. Characterisation of alkali‑activated stainless steel slag and blast‑furnace slag cements[J]. Cement and Concrete Composites, 2023, 143:105230. [百度学术]
PRADHAN S S, MISHRA U, BISWAL S K. Mechanical and microstructural study of slag based alkali activated concrete incorporating RHA[J]. Construction and Building Materials, 2023, 400:132685. [百度学术]
LIU H, SUN Z P, YANG J B, et al. A novel method for semi‑quantitative analysis of hydration degree of cement by