摘要
为探究碳化作用下带裂缝混凝土中钢筋的腐蚀特征,通过控制裂缝参数,研究了带裂缝硬化水泥浆体的碳化规律,分析了碳化作用下带裂缝硬化水泥浆体中钢筋的腐蚀面积率、失重率和电化学腐蚀参数特征.结果表明:养护早期带裂缝水泥硬化浆体的裂缝宽度相较于水灰比对钢筋腐蚀的影响更为显著,养护后期裂缝宽度对钢筋腐蚀的影响仍逐渐增加,并占主导地位;碳化作用下带裂缝水泥硬化浆体的Nyquist图存在2个容抗弧,其中低频区容抗弧随着碳化龄期的增加逐渐收缩,钢筋表面双电层的传递电阻降低,钢筋开始脱钝;在一定的裂缝宽度范围内,较小的水灰比可以抑制硬化水泥浆体中的钢筋腐蚀.
钢筋混凝土结构在水化热、干燥收缩、干湿交替、冷热交替、突加荷载等不利因素的作用下,会产生不同程度的裂缝,降低其耐久
多项研
本文分析了带裂缝水泥硬化浆体的物相组成,表征了硬化水泥浆体的碳化深度,利用交流阻抗Nyquist曲线、Tafel曲线、自然电位、钢筋失重率和腐蚀面积率评价了带裂缝硬化水泥浆体中钢筋的腐蚀程度,阐明了裂缝宽度对硬化水泥浆体中钢筋腐蚀的影响,为钢筋混凝土结构的耐久性设计提供理论依据.
试件的水灰比(mW/mC)设为0.30,裂缝宽度(Wcrack)设为0.1、0.2和0.3 mm.
钢筋去钝化处理:首先,将钢筋用质量分数为10%的柠檬酸铵溶液浸泡5 d后,用清水冲洗干净并放入烘箱中烘干;然后,依次使用粒度为38、25、23 μm的砂纸打磨至光亮;最后,用保鲜膜包裹备用.
裂缝的产生:将不同厚度(0.1、0.2、0.3 mm)的薄铜片插入新拌水泥浆中15 mm,水泥浆初凝前将薄片拔出,拔出后的空隙即为裂缝.
用于测定Nyquist曲线和Tafel曲线的试件,采用尺寸为50 mm×50 mm×50 mm的模具,浆体浇筑模具后静置5 min,随后将钢筋插入试件中央,并将不锈钢丝网插入试件一

图1 用于测定Nyquist曲线和Tafel曲线的试件示意图
Fig.1 Schematic digram for tast of Nyquist and Tafel curves(size:mm)
为测定钢筋的失重率、腐蚀面积率及自然电位值,制备尺寸为100 mm×100 mm×280 mm的试件(见

图2 用于测定钢筋自然电位、失重率和腐蚀面积率的试件示意图
Fig.2 Schematic diagram for test of spontaneous potential,corrosion area rate and weight loss rate of steel bars (size:mm)
XRD采用日本Rigaku Smartlab SE型号仪器,测试范围为5°~90°,扫描速率为5°/min,光源为Cu‑K射线,电流为40 mA,管电压为40 kV.
本试验通过交流阻抗谱法(EIS)和线性极化法(Tafel)评价钢筋腐蚀状
采用线性极化法测试时,从相对开路电位-10 mV至+10 mV进行扫描,扫描速率为9 mV/min.数据采集后采用ZView软件分析其极化曲线,解析各元件参数,评价钢筋锈蚀程度,测量硬化水泥浆体中钢筋在相应碳化龄期下的电化学参数.
自然电位法是利用电化学原理来判断混凝土中钢筋腐蚀程度的一种方法.钢筋锈蚀后,钢筋表面会形成腐蚀电流,钢筋表面与混凝土之间形成电位差,电位差的大小与腐蚀概率有关,根据ASTM C876‑15 Standard test method for corrosion potentials of uncoated reinforcing steel in concrete 钢筋电位与腐蚀概率之间的关系如
Measuring frequency potential/mV | Probability of steel corrosion |
---|---|
>-200 | <10% |
[-200--350] | Indeterminacy |
<-350 | >90% |

图3 裂缝面下不同距离处水泥硬化浆体的XRD图谱
Fig.3 XRD patterns of hardened cement pastes located at different depths under crack surfaces

图4 水灰比对带裂缝硬化水泥浆体碳化深度的影响
Fig.4 Effect of water‑to‑water ratios on carbonation depth of hardened cement pastes with cracks

图5 不同水灰比和裂缝宽度下各碳化龄期试件的交流阻抗Nyquist图
Fig.5 EIS Nyquist curves of specimens with different water‑to‑cement ratios and crack depth after carbonation

图6 不同裂缝宽度的硬化水泥浆体在碳化7、14、28、90 d时内部钢筋的Tafel曲线
Fig.6 Tafel curves of steel bars in the hardened cement pastes with different crack widths after carbonization for 7, 14, 28,90 d

图7 不同水灰比和裂缝宽度下硬化水泥浆体中钢筋自然电位随碳化龄期的变化趋势
Fig.7 Change of spontaneous potential of steel bars in hardened cement pastes with different water‑to‑cement ratios and crackwidths

图8 带裂缝水泥硬化浆体中钢筋腐蚀面积率和失重率
Fig.8 Corrosion area rate and weight loss rate of steel bars in hardened cement paste with cracks
(1)养护早期,相较于水灰比,带裂缝硬化水泥浆体的裂缝宽度对钢筋腐蚀的影响更为明显;养护后期,裂缝宽度对钢筋腐蚀的影响仍逐渐增加,在相同水灰比条件下,裂缝宽度引起的钢筋腐蚀差异逐步明显,裂缝宽度对钢筋腐蚀的影响占主导地位.在一定的裂缝宽度范围内,较小的水灰比可以有效地抑制钢筋腐蚀.
(2)碳化作用下带裂缝硬化水泥浆体的Nyquist曲线存在2个容抗弧,即2个时间常数,可以有效评价钢筋脱钝与腐蚀程度;随着碳化龄期的增加,低频区的容抗弧逐渐收缩,容抗弧半径减小,钢筋表面双电层的传递电阻降低,钢筋开始腐蚀.
(3)随着裂缝宽度的增加,钢筋腐蚀电位下移,耐腐蚀性变差;随着碳化龄期的增加,极化曲线阳极区斜率逐渐增大,阴极区斜率逐渐减小,在相等的极化电位下电流密度的变化速度增大,此时电极在阳极溶解过程中遇到的阻力变小,腐蚀速度加快,电阻抗值随着龄期增加而减小,钢筋更易腐蚀.
参考文献
TIAN Y P, BAO J W, GUO W A, et al. Autogenous self‑healing of cracked concrete exposed to the marine tidal zone[J]. Construction and Building Materials, 2022, 357:129336. [百度学术]
CHEN J Y, YE G. A lattice Boltzmann single component model for simulation of the autogenous self‑healing caused by further hydration in cementitious material at mesoscale[J]. Cement and Concrete Research, 2019, 123:105782. [百度学术]
SONG Y R, WIGHTMAN E, BU H, et al. Rebar corrosion and its interaction with concrete degradation in reinforced concrete sewers[J]. Water Research, 2020, 182:115961. [百度学术]
张铖,王玲,姚燕,等.逐层磨粉pH值法测定混凝土碳化深度的试验研究[J].材料导报,2022,36(7):21030009. [百度学术]
ZHANG Cheng, WANG Ling, YAO Yan, et al. Determination of concrete carbonation depth by testing the pH value of layer⁃by‑layer grinding concrete samples[J]. Materials Reports, 2022, 36(7):21030009. (in Chinese) [百度学术]
LI Y, SU Y Q, TAN X T, et al. Pore structure and splitting tensile strength of hybrid basalt‑polypropylene fiber reinforced concrete subjected to carbonation[J]. Construction and Building Materials, 2021, 297:123779. [百度学术]
WANG L, LI Y J, MEI K Z, et al. Evaluation of combined addition of nitrite and chloride on the corrosion behavior of steel bars in modified magnesium oxysulfate cement paste[J]. Construction and Building Materials, 2024, 422:135794. [百度学术]
MARCOS‑MESON V, MICHEL A, SOLGAARD A, et al. Corrosion resistance of steel fibre reinforced concrete—A literature review[J]. Cement and Concrete Research, 2018, 103:1‑20. [百度学术]
WANG X, BA M F, YI B, et al. Experimental and numerical investigation on the effect of cracks on chloride diffusion and steel corrosion in concrete[J]. Journal of Building Engineering, 2024, 86:108521. [百度学术]
KANWAL M, KHUSHNOOD R A, KHALIQ W, et al. Synthesis of pyrolytic carbonized bagasse to immobilize bacillus subtilis; application in healing micro‑cracks and fracture properties of concrete[J]. Cement and Concrete Composites, 2022, 126:104334. [百度学术]
ZHANG K J, XIAO J Z, ZHAO Y X, et al. Analytical model for critical corrosion level of reinforcements to cause the cracking of concrete cover[J]. Construction and Building Materials, 2019, 223:185‑197. [百度学术]
王晓磊,梁志权.内埋聚氨酯胶管混凝土自修复效果计算式[J].建筑材料学报,2020,23(4):794‑800. [百度学术]
WANG Xiaolei, LIANG Zhiquan. Calculation formula of self‑repairing effect of concrete with polyurethane rubber hose embedded[J]. Journal of Building Materials, 2020, 23(4):794‑800. (in Chinese) [百度学术]
HUANG A L, CHEN Q, XIE L J, et al. EIS based assessment of electro deposition effect of concrete cracks:Experiment and equivalent model[J]. Construction and Building Materials, 2023, 377:131080. [百度学术]
WANG X, BA M F, YI B, et al. Experimental and numerical investigation on the effect of cracks on chloride diffusion and steel corrosion in concrete[J]. Journal of Building Engineering, 2024, 86:108521. [百度学术]
WANG H, ZHANG A L, ZHANG L C, et al. Hydration process of rice husk ash cement paste and its corrosion resistance of embedded steel bar[J]. Journal of Central South University, 2020, 27:3464‑3476. [百度学术]
巴明芳,张丹蕾,赵启俊,等.碳化与氯盐复合作用下硫氧镁胶凝材料的护筋性[J].建筑材料学报,2021,24(5):946‑951. [百度学术]
BA Mingfang, ZHANG Danlei, ZHAO Qijun, et al. Corrosion resistance of steel bars of magnesium oxy‑sulfate cementitious material under the combined action of carbonation and chloride salt[J]. Journal of Building Materials, 2021, 24(5):946‑951. (in Chinese) [百度学术]
孙佳,金祖权,秦一琦.钢筋非均匀锈蚀与混凝土开裂试验与数值模拟研究[J].建筑材料学报,2024,27(4):309‑319. [百度学术]
SUN Jia, JIN Zuquan, QIN Yiqi. Experimental and numerical simulation study on non‑uniform corrosion of steel bar and concrete cracking[J]. Journal of Building Materials, 2024, 27(4):309‑319. (in Chinese) [百度学术]
刘俊阳,王艳,孙丛涛,等.LDHs‑BTA的制备及其对钢筋的阻锈性能[J].建筑材料学报,2024,27(6):503‑513. [百度学术]
LIU Junyang, WANG Yan, SUN Congtao, et al. Preparation of LDHS‑BTA and its inhibition for corrosion of rebar[J]. Journal of Building Materials, 2024, 27(6):503‑513. (in Chinese) [百度学术]
WANG H, ZHANG A L, SHI F T, et al. Development of relationships between permeability coefficient and electrical and thermal conductivity of recycled aggregates permeable cement concrete[J]. Construction and Building Materials, 2020, 254:119247. [百度学术]
郭群,李晓珍,宋屹林,等.钢筋阻锈剂在碳化钢筋混凝土中的阻锈作用[J].建筑材料学报,2023,26(1):21‑28. [百度学术]
GUO Qun, LI Xiaozhen, SONG Yilin, et al. Effect of steel bar corrosion inhibitors in carbonated reinforced concrete[J]. Journal of Building Materials, 2023, 26(1):21‑28. (in Chinese) [百度学术]
MEI K Z, HE Z M, YI B, et al. Study on electrochemical characteristics of reinforced concrete corrosion under the action of carbonation and chloride[J]. Case Studies in Construction Materials, 2022, 17:e01351. [百度学术]
WANG D C, XIAO J Z, DUAN Z H, et al. Strategies to accelerate CO2 sequestration of cement‑based materials and their application prospects[J]. Construction and Building Materials, 2022, 314:125646. [百度学术]