摘要
巴基斯坦巴沙大坝工程采用掺天然火山灰的碾压混凝土(RCC),为了快速推定RCC的1 a抗压强度,测试了不同温度下天然火山灰与水泥复合胶凝材料的表观活化能,并尝试采用Freiesleben‑Hansen‑Pedersen(FHP)模型计算不同加速养护制度下的等效标准养护龄期(等效龄期).结果表明:复合胶凝材料在70~90 ℃下的表观活化能通过试验难以测得,但基于表观活化能的温度依存性,可通过对其5~60 ℃下表观活化能的一元线性回归计算得出,并获得改进FHP模型;基于工程现场测试结果,与FHP模型相比,采用改进FHP模型计算出的90 ℃等效龄期与实测等效龄期的偏差率均在6.7%以内.
巴基斯坦巴沙大坝工程是全球已建和在建中最高、体量最大的碾压混凝土(RCC)重力坝,总体积达1 710万
Nurs
针对液相和气相反应,Arrhenius在19世纪80年代提出了基于表观活化能的化学反应速率常数经验公
鉴于此,本文采用FHP模型,通过测试胶凝材料的表观活化能,推定高温蒸养制度下RCC各龄期对应的等效龄期,为建立推定掺天然火山灰RCC等效长龄期强度的加速养护方法提供参考.
水泥采用伊斯兰堡Fauji水泥厂生产的ASKARI LAC水泥,物理性能见
Specific surface area/( | Setting time/min | Compressive strength/MPa | Heat of hydration/(J· | ||||
---|---|---|---|---|---|---|---|
Initial | Final | 3 d | 7 d | 28 d | 3 d | 7 d | |
325 | 170 | 230 | 15 | 23 | 34 | 259 | 300 |
MgO | SO3 | Na2O+0.658K2O | IL | Insoluble residue | C3S | C2S | C3A | C4AF |
---|---|---|---|---|---|---|---|---|
2.30 | 1.90 | 0.55 | 1.70 | 0.81 | 47.10 | 24.40 | 3.30 | 15.80 |
天然火山灰为巴沙大坝周边Chilas地区Gini料源点的冰碛石样品,在筛除大于0.55 mm(30目)的粗颗粒后,经小型球磨机粉磨1 h而成,其物理性能见
Apparent density/(kg· | Fineness(residue on 45 μm square‑hole sieve, by mass)/% | Specific surface area/( | Water requirement (by mass)/% | IL(by mass)/% | Strength activity index/% | |
---|---|---|---|---|---|---|
7 d | 28 d | |||||
2 910 | 4.7 | 471 | 101 | 0.9 | 75 | 77 |

图1 天然火山灰的矿物组成
Fig.1 Mineral composition of natural pozzolan
砂为厦门艾思欧标准砂公司生产的ISO标准砂.水为自来水.
Arrhenius经验公
(1) |
式中:为反应速率;为指前因子;为表观活化能,kJ/mol;为气体常数,8.314 J/(mol·K);为反应温度,K.
据此Hansen
= | (2) |
式中:和为达到相同反应程度时,反应温度和分别对应的反应时间,d.
对
(3) |
式中:为时的龄期,d;为标准养护温度,取296.15 K.
ASTM C1074‑11 Standard Practice for Estimating Concrete Strength by the Maturity Method 推荐TypeⅠ型水泥的表观活化能为40~45 kJ/mol.对于掺有粉煤灰、矿渣粉等掺合料的复合胶凝材料,其表观活化能通常小于纯水
参照ASTM C1074‑11附录A中的方法,采用与RCC(Class 18.9)水胶比(mW/mB)、胶砂比(mB/mS)和胶凝材料(水泥与天然火山灰)组成相同的砂浆配合比作为试验配合比,RCC和砂浆的配合比分别如
mW/mB | mB/mS | Amount/(kg· | w(water reducer)/% | ||||
---|---|---|---|---|---|---|---|
Cement | Natural pozzolan | Water | Sand | Coarse aggregate | |||
0.55 | 0.21 | 100 | 100 | 110 | 968 | 1 393 | 1.5 |
mW/mB | mB/mS | Binder/(kg· | |
---|---|---|---|
Cement | Natural pozzolan | ||
0.55 | 0.21 | 187 | 187 |
拌和、成型40 mm×40 mm×160 mm棱柱体砂浆试件,随后放入蒸养箱中带模养护至特定龄期,最后测试其抗压强度.对于蒸养温度的选择,除ASTM C1074‑11中规定的12、23、32 ℃外,现有研究通常基于混凝土绝热温升值或者实体结构内部温度峰值考虑,选择60 ℃以下的3~4个温度参数.因此,本研究在综合以上经验并考虑试验条件后,选定的养护温度为20、40、60 ℃.此外,不同温度下的测试龄期应以达到基本相同的成熟度为准,故温度越高,实际测试时间越早.
测得各温度下不同龄期试件的抗压强度S后,通过
(4) |
对反应速率常数的自然对数ln k与对应开尔文温度的倒数1/T进行一元线性回归拟合,获得拟合直线斜率的绝对值,代入
(5) |
砂浆抗压强度与龄期的拟合曲线如

图2 砂浆抗压强度与龄期的拟合曲线
Fig.2 Fitting curves of compressive strength versus age of mortars
对反应速率常数的自然对数ln k与Tr的倒数1/Tr进行一元线性回归拟合,结果如

图3 砂浆 ln k与1/Tr的关系图
Fig.3 Plot of ln k versus 1/Tr for mortars
在巴沙大坝现场RCC配合比试验中,同时对21组RCC试件进行23 ℃标准养护和90 ℃加速养护,至规定龄期后进行强度测试和比较分析,以验证计算所得表观活化能的准确性,具体加速养护制度如
Accelerate curing regime | Accelerated curing method |
---|---|
AC7+7 | 23 ℃ standard curing for 4 d+90 ℃ steam curing for 7 d+23 ℃ standard curing for 3 d |
AC14+7 | 23 ℃ standard curing for 4 d+90 ℃ steam curing for 14 d+23 ℃ standard curing for 3 d |
AC28+7 | 23 ℃ standard curing for 4 d+90 ℃ steam curing for 28 d+23 ℃ standard curing for 3 d |
AC56+7 | 23 ℃ standard curing for 4 d+90 ℃ steam curing for 56 d+23 ℃ standard curing for 3 d |
No. | Cement type | Specific surface area of natural pozzolan/( | mW/mB | Water amount/(kg· | Air content(by volume)/% | Binder amount/(kg· | Compressive strength/MPa | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cement | Natural pozzolan | 28 d | 56 d | 90 d | 180 d | 365 d | AC7+7 | AC14+7 | AC28+7 | AC56+7 | ||||||
1 | ASKARI LAC | 325 | 0.50 | 110 | 1.4 | 110 | 110 | 19.2 | 20.4 | 22.4 | 23.8 | 24.2 | 20.3 | 23.1 | 25.8 | 27.5 |
2 | ASKARI LAC | 325 | 0.52 | 104 | 1.6 | 100 | 100 | 16.7 | 18.5 | 21.2 | 21.8 | 22.1 | 19.5 | 20.5 | 22.9 | 23.5 |
3 | BESTWAY OPC | 549 | 0.53 | 105 | 1.5 | 100 | 100 | 17.6 | 19.7 | 21.1 | 21.7 | 22.4 | 18.5 | 21.4 | 22.6 | 23.6 |
4 | ASKARI LAC | 325 | 0.53 | 105 | 1.6 | 100 | 100 | 19.0 | 21.5 | 23.6 | 24.9 | 25.9 | 21.3 | 22.7 | 23.6 | 24.0 |
5 | ASKARI LAC | 325 | 0.53 | 105 | 1.4 | 100 | 100 | 22.0 | 23.5 | 25.1 | 27.1 | 28.8 | 24.8 | 25.6 | 26.8 | 27.2 |
6 | ASKARI LAC | 325 | 0.55 | 105 | 1.6 | 95 | 95 | 15.5 | 16.8 | 20.5 | 21.6 | 21.9 | 16.4 | 18.5 | 20.4 | 21.3 |
7 | ASKARI LAC | 325 | 0.55 | 105 | 1.6 | 95 | 95 | 20.0 | 21.9 | 23.4 | 25.1 | 25.3 | 20.3 | 24.8 | 25.6 | 26.0 |
8 | ASKARI LAC | 325 | 0.55 | 105 | 1.6 | 95 | 95 | 18.0 | 20.3 | 21.1 | 22.4 | 24.3 | 20.2 | 22.4 | 23.8 | 24.5 |
9 | ASKARI LAC | 325 | 0.55 | 110 | 1.5 | 100 | 100 | 18.9 | 21.2 | 25.4 | 25.9 | 26.4 | 20.5 | 24.5 | 25.8 | 27.1 |
10 | ASKARI LAC | 440 | 0.55 | 110 | 1.5 | 100 | 100 | 22.4 | 24.3 | 26.8 | 27.6 | 28.8 | 24.6 | 27.0 | 28.6 | 29.1 |
11 | ASKARI LAC | 501 | 0.55 | 110 | 1.6 | 100 | 100 | 18.1 | 20.6 | 23.1 | 24.8 | 25.3 | 20.5 | 21.8 | 23.0 | 23.4 |
12 | ASKARI LAC | 571 | 0.55 | 110 | 1.7 | 100 | 100 | 20.8 | 22.7 | 25.2 | 25.7 | 26.4 | 22.1 | 24.8 | 25.2 | 25.8 |
13 | ASKARI LAC | 325 | 0.55 | 110 | 1.4 | 100 | 100 | 18.3 | 18.5 | 20.7 | 23.1 | 23.9 | 19.6 | 22.6 | 23.6 | 24.2 |
14 | ASKARI LAC | 435 | 0.55 | 110 | 1.5 | 100 | 100 | 15.4 | 16.4 | 19.9 | 20.7 | 21.4 | 16.2 | 19.5 | 20.6 | 21.7 |
15 | BESTWAY OPC | 435 | 0.55 | 110 | 1.5 | 100 | 100 | 17.2 | 18.2 | 19.5 | 21.6 | 22.1 | 17.3 | 22.4 | 23.1 | 24.2 |
16 | ASKARI LAC | 510 | 0.55 | 110 | 1.7 | 100 | 100 | 16.4 | 17.4 | 20.7 | 22.3 | 22.7 | 17.9 | 20.4 | 21.3 | 22.4 |
17 | BESTWAY OPC | 510 | 0.55 | 110 | 1.8 | 100 | 100 | 16.2 | 17.5 | 18.9 | 20.4 | 22.5 | 16.2 | 20.5 | 21.5 | 22.8 |
18 | ASKARI LAC | 549 | 0.55 | 110 | 1.7 | 100 | 100 | 15.8 | 17.8 | 20.0 | 20.2 | 20.5 | 18.5 | 18.6 | 20.2 | 20.7 |
19 | ASKARI LAC | 325 | 0.56 | 100 | 1.5 | 90 | 90 | 12.1 | 13.6 | 15.8 | 16.4 | 17.1 | 12.4 | 15.2 | 16.4 | 16.9 |
20 | ASKARI LAC | 325 | 0.59 | 117 | 1.7 | 100 | 100 | 12.2 | 13.2 | 15.6 | 16.4 | 16.8 | 14.2 | 15.7 | 16.7 | 17.2 |
21 | ASKARI LAC | 325 | 0.60 | 105 | 1.6 | 90 | 85 | 16.5 | 17.6 | 20.3 | 21.8 | 23 | 18.2 | 19.6 | 21.2 | 21.7 |
Standard curing age/d | Rf/% | Accelerated curing regime | Rf/% |
---|---|---|---|
56 | 109 | AC7+7 | 108 |
90 | 123 | AC14+7 | 123 |
180 | 130 | AC28+7 | 130 |
360 | 134 | AC56+7 | 135 |
通过
Accelerated curing regime | te/d | Actual equivalent age/d | Deviation/% |
---|---|---|---|
AC7+7 | 59 | 56 | 5.4 |
AC14+7 | 111 | 90 | 23.3 |
AC28+7 | 216 | 180 | 20.0 |
AC56+7 | 425 | 360 | 18.1 |
虽然在一定温度范围内,表观活化能通常被视为与温度无关的常数,但对于复杂反应,ln k与1/Tr并非很好的线性关系,这说明表观活化能与温度是相关的.Kim
因此,为了获得与快速养护温度90 ℃匹配的表观活化能,以修正等效龄期计算结果,采用与20~60 ℃下相同的方式成型砂浆试件,并在70、80、90 ℃下蒸养至特定龄期,测试抗压强度,结果如

图4 70~90 ℃下砂浆抗压强度发展
Fig.4 Compressive strength development at 70-90 ℃
通过合理设置静停时间,可使试件获得足够的结构强度以抵抗水蒸气的热胀作用,促进后期力学性能增

图5 标准养护条件下试件的早期抗压强度发展
Fig.5 Early compressive strength development of specimens under standard curing condition
经静停后砂浆的抗压强度-龄期拟合曲线如

图6 经静停后砂浆的抗压强度-龄期拟合曲线
Fig.6 Fitting curves of compressive strength versus age with mortar precuring
采用压汞法对80 ℃下经静停与否的砂浆孔径分布进行了测试,结果如

图7 经静停与否的砂浆的孔径分布
Fig.7 Pore size distribution of mortars with or without precuring
吴中伟依据孔径(d)将孔隙分为无害孔(d<20 nm)、少害孔(20 nm≤d<50 nm)、有害孔(50 nm≤d≤200 nm)和多害孔(d>200 nm),其中有害孔和多害孔对强度的影响较大.据此对压汞数据进行处理,得到砂浆在不同龄期时的孔隙率和孔级配直方图,如

图8 经静停与否的砂浆试件在不同龄期时的孔隙率和孔级配
Fig.8 Porosity and pore gradation of mortars with or without precuring at different ages
虽然难以通过试验方法获得较高温度下的表观活化能,但是仍可通过对较低温度下表观活化能与温度关系的拟合,推断高温表观活化能.对已有研

图9 E0与Tr关系的回归分析
Fig.9 Regression analysis of the relationship between E0 and Tr
(6) |
式中:为时的表观活化能,kJ/mol.
以上数据皆为采用纯TypeⅠ型水泥时所得,则根据
(7) |
将
(8) |
根据
Accelerated curing regime | t/d | Actual equivalent age/d | Deviation/% |
---|---|---|---|
AC7+7 | 53 | 56 | 5.4 |
AC14+7 | 95 | 90 | 5.6 |
AC28+7 | 192 | 180 | 6.7 |
AC56+7 | 378 | 360 | 5.0 |
在采用改进FHP模型推定等效龄期时,应特别注意水胶比和胶凝材料组成的变化对表观活化能的影响. 利用文献[
Cementitious material composition | mW/mB | Apparent activation energy/(kJ·mo |
---|---|---|
100% typeⅠ | 0.41 | 28.6 |
100% typeⅠ | 0.44 | 34.8 |
100% typeⅠ | 0.48 | 42.3 |
100% typeⅢ | 0.37 | 41.4 |
100% typeⅢ | 0.44 | 42.9 |
80% typeⅠ+ 20% class F fly ash | 0.41 | 25.8 |
70% typeⅠ+ 30% class F fly ash | 0.41 | 23.2 |
80% typeⅠ+ 20% class C fly ash | 0.41 | 37.8 |
70% typeⅠ+ 30% class C fly ash | 0.41 | 45.1 |
70% typeⅠ+ 30% slag | 0.41 | 55.7 |
50% typeⅠ+ 50% slag | 0.41 | 61.5 |
(1)通过测试蒸养温度20~60 ℃下的砂浆强度,可计算得到该温度区间的胶凝材料表观活化能.对于工程现场的RCC,采用FHP模型计算的等效龄期与实测等效龄期的偏差率在长龄期(90 d~1 a)下较大,达到20%左右.
(2)采用在标准养护条件下预先静停的方法有效避免了70~90 ℃蒸养时的长期强度倒缩,但仍难以获得该温度区间的表观活化能,其根本原因在于高温下水泥水化的扩散过程被抑制,温度与反应速率常数的正相关关系被破坏.
(3)通过建立已有研究中水泥混凝土和砂浆的表观活化能与温度的一元线性回归关系,可推断出高温下的表观活化能,并得到改进FHP模型.用改进FHP模型计算的等效龄期与实测等效龄期在各龄期下的偏差率均在6.7%以内.
参考文献
NURSE R W. Steam curing of concrete[J]. Magazine of Concrete Research, 1949, 1(2):79‑88. [百度学术]
SAUL A G A. Principles underlying the steam curing of concrete at atmospheric preasure[J]. Magazine of Concrete Research, 1951, 2(6):127‑140. [百度学术]
HEWLETT P.Lea's chemistry of cement and concrete[M]. Amsterdam:Elsevier Butterworth Heinemann, 2004:345‑347. [百度学术]
HANSEN P F, PEDERSEN E J. Maturity computer for controlled curing and hardening of concrete strength[J]. Nordik Betong, 1977, 21(1):19‑34. [百度学术]
祝小靓. 实际温度和约束下微膨胀抗冲磨混凝土抗裂机理研究[D]. 南京:南京水利科学研究院, 2015. [百度学术]
ZHU Xiaoliang. Crack‑resistant mechanism of expansive abrasion‑resistant concrete under simulated in‑situ temperature history and constraint[D]. Nanjing:Nanjing Hydraulic Research Institute, 2015. (in Chinese) [百度学术]
YANG K H, MUN J S, KIM D G,et al. Comparison of strength‑maturity models accounting for hydration heat in massive walls[J]. International Journal of Concrete Structures and Materials, 2016, 10(1):47‑60. [百度学术]
MYERS J J. The use of maturity methods as a quality control tool for high performance concrete bridge decks[C]// PCI/FHWA/FIB International Symposium on High Performance Concrete. Chicago: Precast/Prestress Concrete Institute, 2000:25‑27. [百度学术]
CARINO N J, TANK R C. Maturity functions for concretes made with various cements and admixtures[J]. ACI Materials Journal, 1992, 89(2):188‑196. [百度学术]
CARINO N J. The maturity method:Theory and application[J]. Cement Concrete and Aggregates, 1984, 6(2):61‑73. [百度学术]
BENTZ D P. Activation energies of high‑volume fly ash ternary blends:Hydration and setting[J]. Cement and Concrete Composites, 2014, 53:214‑223. [百度学术]
LEE C H, HOVER K C. Influence of datum temperature and activation energy on maturity strength predictions[J]. ACI Materials Journal, 2015, 112(6):781‑790. [百度学术]
KIM J K, HAN S H, LEE K M. Estimation of compressive strength by a new apparent activation energy function[J]. Cement and Concrete Research, 2001, 31(2):217‑225. [百度学术]
KADA‑BENAMEUR H, WIRQUIN E, DUTHOIT B. Determination of apparent activation energy of concrete by isothermal calorimetry[J]. Cement and Concrete Research, 2000, 30(2):301‑305. [百度学术]
杨建森. 混凝土中钙矾石作用的二重性[J]. 建筑材料学报, 2001, 4(4):362‑366. [百度学术]
YANG Jiansen. Discussion on the duality of ettringite action in concrete[J]. Journal of Building Materials, 2001, 4(4):362‑366. (in Chinese) [百度学术]
马昆林, 龙广成, 谢友均. 蒸养混凝土轨道板劣化机理研究[J]. 铁道学报, 2018, 40(8):116‑121. [百度学术]
MA Kunlin, LONG Guangcheng, XIE Youjun. Deterioration mechanism of steam‑cured concrete track slab[J]. Journal of the China Railway Society, 2018, 40(8):116‑121. (in Chinese) [百度学术]
彭波. 蒸养制度对高强混凝土性能的影响[D]. 武汉:武汉理工大学, 2007. [百度学术]
PENG Bo. Influence of steam‑curing system on the performance of high strength concrete[D]. Wuhan:Wuhan University of Technology, 2007. (in Chinese) [百度学术]
贺智敏. 蒸养混凝土的热损伤效应及其改善措施研究[D]. 长沙:中南大学, 2012. [百度学术]
HE Zhiming. Heat damage effects of steam curing on concrete and corresponding improvement measures[D]. Changsha:Central South University, 2012. (in Chinese) [百度学术]
张增起, 石梦晓, 王强, 等. 等效龄期法在大体积混凝土性能预测中的准确性[J]. 清华大学学报(自然科学版), 2016, 56(8):806‑810. [百度学术]
ZHANG Zengqi, SHI Mengxiao, WANG Qiang, et al. Accuracy of equivalent age method for predicing mass concrete properties[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(8):806‑810. (in Chinese) [百度学术]
KJELLSEN K O, DETWILER R J. Later ages strength prediction by a modified maturity method[J]. ACI Materials Journal, 1993, 90(3):220‑227. [百度学术]
KLIEGER P. Effect of mixing and curing temperature on concrete strength[J]. ACI Materials Journal, 1958, 54(1):1063‑1074. [百度学术]
KIM J K, MOON Y H, EO S H. Compressive strength development of concrete with different curing time and temperature[J]. Cement and Concrete Research, 1998, 28(12):1761‑1773. [百度学术]
BROOKS J J, AI‑KAISI A F. Early strength development of Portland and slag cement concretes cured at elevated temperatures[J]. ACI Materials Journal, 1990, 87(5):503‑506. [百度学术]
TANK R C, CARINO N J. Rate constant functions for strength development of concrete[J]. ACI Materials Journal, 1991, 88(1):74‑83. [百度学术]
GUO C J. Maturity of concrete:Method for predicting early‑stage strength[J]. ACI Materials Journal, 1989, 86(4):341‑353. [百度学术]
WADE S A. Evaluation of the maturity method to estimate concrete strength[D]. Auburn:Auburn University, 2005. [百度学术]