摘要
复杂含硫物的逸出是水泥窑协同处理城市生活污水污泥(MSS)技术中亟待解决的难题.采用聚合物导向自组装法及浸渍法制备负载磷钨酸(HPW)的介孔二氧化钛(TiO2)催化剂(简称介孔HPW‑TiO2催化剂),并对含硫物的催化效果进行表征.结果表明:相较浸渍法,采用聚合物导向自组装法可获得更大比表面积和更多酸性位点的介孔HPW‑TiO2催化剂;在水泥预热窑温度(200、260、320 ℃)下,采用聚合物导向自组装法合成的催化剂表现出更加高效的催化性能,能够有效加速MSS中的芳香族‑S及脂肪族‑S有机含硫物氧化转化为亚砜和砜.
传统的城市污水污泥(MSS)处置方式,如填埋、堆肥和焚烧等会造成污染和潜在资源浪
石油工业中广泛应用氧化脱硫(ODS)技术实现含硫物的形态转
鉴于此,本文采用聚乙烯亚胺(PEI)导向自组装法(简称聚合物导向自组装法)和浸渍法,制备了2种介孔HPW‑TiO2催化剂并研究其性能差异.本研究中ODS催化系统以介孔HPW‑TiO2作为催化剂,氧气作为氧化剂.模拟水泥预热窑温度(200、260、320 ℃),对催化剂的氧化催化性能进行系统评估,同时探讨了MSS中芳香族和脂肪族有机含硫物的氧化机理.
聚乙烯亚胺(PEI,重均分子量600)、磷钨酸(HPW,分析纯)、醋酸(HOAc,纯度99.8%(质量分数,文中涉及的纯度、掺量等均为质量分数))和钛酸四丁酯(TBOT,纯度98%)这4种化学品均由国药集团化学试剂有限公司提供,用于介孔HPW‑TiO2催化剂的合成. MSS取自上海曲阳污水处理厂,在105 ℃下预干化至恒重.
介孔HPW‑TiO2催化剂通过在室温下的简单研磨和400 ℃下的煅烧合
采用Micromeritics APSP 2460型多站式全自动比表面积与孔径分析仪测试催化剂的氮气吸附/脱附数据,通过Brunauer‑Emmett‑Teller(BET)法和Barett‑Jonyer‑Halenda(BJH)法分别得到催化剂的比表面积和孔径分布数据;采用ZEISS Gemini 300型扫描电镜(SEM)和JEOL JEM‑2100Plus型透射电子显微镜(TEM)观察催化剂的表面形貌;采用RiGaKu UltimaⅣ型X射线衍射仪(XRD)测试催化剂的晶体结构和物相组成;采用Microtrac BELCatⅡ型全自动化学吸附仪(NH3‑TPD)测试催化剂的酸性位点.

图1 HPW及3种催化剂样品的XRD图谱
Fig.1 XRD patterns of HPW and three kinds of catalyst samples
利用SEM和TEM表征20%HPW‑TiO2样品的微观形貌,其SEM和TEM照片见

图2 20%HPW‑TiO2样品的微观形貌
Fig.2 Microscopic morphology of 20%HPW‑TiO2 sample
通过氮气吸附/脱附测试结果来研究介孔TiO2、20%HPW‑TiO2和20%HPW‑TiO2‑DP样品的孔隙特性和结构特征,结果见

图3 介孔TiO2、20%HPW‑TiO2和20%HPW‑TiO2‑DP样品的氮气吸附/脱附结果
Fig.3 N2 adsorption/desorption results of mesoporous TiO2,20%HPW‑TiO2 and 20%HPW‑TiO2‑DP samples
Sample | SBET/ ( | D/nm | V/ (c |
---|---|---|---|
Mesoporous TiO2 | 77.06 | 15.443 | 0.297 |
20%HPW‑TiO2 | 194.90 | 8.023 | 0.394 |
20%HPW‑TiO2‑DP | 81.87 | 13.163 | 0.269 |
产生这种差异的原因可能是,聚合物导向自组装法在凝胶体系合成介孔TiO2过程中是对HPW进行直接引入的,而浸渍法是在后期将HPW引入到介孔TiO2框架中的. 聚合物导向自组装法的合成机理
MSS中低价态有机含硫物中S原子上的自由孤电子对具有路易斯碱的基本特性,易被酸性位点吸

图4 介孔TiO2、20%HPW‑TiO2和20%HPW‑TiO2‑DP样品的酸性位点总量
Fig.4 Total amount of acidic site of mesoporous TiO2,20%HPW‑TiO2 and 20%HPW‑TiO2‑DP samples
在200、260、320 ℃下煅烧MSS,分别掺加20% HPW‑TiO2和20% HPW‑TiO2‑DP催化剂(掺量均为9%),并以纯MSS作为对照组. 采用XPS测试以上样品的S2p谱线,以分析含硫物的形态转化情况. 常温下,试验用MSS主要含有芳香族‑S、脂肪族‑S、砜和硫酸盐,其结合能峰值分别为163.3、164.1、168.0、170.0 e

图 5 煅烧200 ℃后掺/未掺介孔HPW‑TiO2催化剂的MSS中含硫物的含量及S2p谱线
Fig.5 Contents of sulfur‑containing materials in MSS and S2p spectral lines with/without mesoporous HPW‑TiO2 catalysts after 200 ℃ calcination

图6 煅烧 260 ℃后掺/未掺介孔HPW‑TiO2催化剂的MSS中含硫物的含量及S2p谱线
Fig.6 Contents of sulfur‑containing materials in MSS and S2p spectral lines with/without mesoporous HPW‑TiO2 catalysts after 260 ℃ calcination

图7 煅烧320 ℃后掺/未掺介孔HPW‑TiO2催化剂的MSS中含硫物的含量及S2p谱线
Fig.7 Contents of sulfur‑containing materials in MSS and S2p spectral lines with/without mesoporous HPW‑TiO2 catalysts after 320 ℃ calcination
由
由
由
总的来说,煅烧温度为200 ℃时,在介孔HPW‑TiO2催化剂存在时,脂肪族‑S的氧化反应转化率较高.随着温度的升高,脂肪族‑S逐渐分解逸出,而芳香族‑S的氧化反应转化率得到较大增强.
(1)采用聚合物导向自组装法和浸渍法合成了介孔HPW‑TiO2催化剂.与浸渍法相比,采用聚合物导向自组装法制备的介孔HPW‑TiO2催化剂具有更大的比表面积、孔体积以及更多酸性位点,且操作相对简单、耗时短.
(2)在水泥预热窑温度(200、260、320 ℃)下,介孔HPW‑TiO2催化剂对MSS中的低价态有机含硫物的氧化反应表现出有效的催化活性.与浸渍法相比,由于反应空间的增加以及对含硫物吸附能力的增强,采用聚合物导向自组装法制备的催化剂具有更高的催化活性.
(3)200 ℃时在介孔HPW‑TiO2催化剂催化作用下,脂肪族‑S的氧化反应转化率较高.随着温度的升高,脂肪族‑S分解逸出,而芳香族‑S的氧化反应转化率得到较大增强.
(4)介孔HPW‑TiO2催化剂的催化反应机理为:氧分子在催化剂表面被活化为活性氧,吸附在催化剂上的低价态有机含硫物,被作为中间产物的活性氧氧化,转化为亚砜,并进一步氧化为砜.
参考文献
钱觉时, 谢从波, 谢小莉,等. 城市生活污水污泥建材利用现状与研究进展 [J]. 建筑材料学报 , 2014, 17(5):829‑836,891. [百度学术]
QIAN Jueshi, XIE Congbo, XIE Xiaoli, et al. Current status and research progress of building materials utilization of municipal sewage sludge [J]. Journal of Building Materials, 2014, 17(5):829‑836,891. (in Chinese) [百度学术]
YANG G, ZHANG G M, WANG H C. Current state of sludge production, management, treatment and disposal in China [J]. Water Research, 2015, 78:60‑73. [百度学术]
高琦, 肖建庄, 沈剑羽. 园林垃圾对工程弃土烧结砖性能的影响 [J]. 建筑材料学报, 2022, 25(11):1195‑1202. [百度学术]
GAO Qi, XIAO Jianzhuang, SHEN Jianyu. Influence of garden waste on the performance of sintered bricks made from engineering waste [J]. Journal of Building Materials, 2022, 25(11):1195‑1202. (in Chinese) [百度学术]
梁仕华, 王杰, 王羽心, 等. 水泥协同垃圾焚烧飞灰固化渗滤液污泥试验研究 [J]. 建筑材料学报, 2024, 27(8):691‑700. (in Chinese) [百度学术]
LIANG Shihua, WANG Jie, WANG Yuxin, et al. Experimental study on solidification/stabilization of leachate sludge by cement and MSWI fly ash [J]. Journal of Building Materials, 2024, 27(8):691‑700. (in Chinese) [百度学术]
蒋正武, 高文斌, 杨巧, 等. 低碳混凝土的技术理念与途径思考 [J]. 建筑材料学报, 2023, 26(11):1143‑1150. [百度学术]
JIANG Zhengwu, GAO Wenbin, YANG Qiao, et al. Technical concepts and approaches of low‑carbon concrete [J]. Journal of Building Materials, 2023, 26(11):1143‑1150. (in Chinese) [百度学术]
KOSAJAN V, WEN Z G, FEI F, et al. The feasibility analysis of cement kiln as an MSW treatment infrastructure:From a life cycle environmental impact perspective [J]. Journal of Cleaner Production, 2020, 267:122113. [百度学术]
李寅雪, 刘卓霖, 任兵建, 等. 水泥窑协同处置MSW环境负荷与性能耦合评价 [J]. 建筑材料学报,2024,27(4):299‑308. [百度学术]
LI Yinxue, LIU Zhuolin, REN Bingjian, et al. Coupled evaluation of environmental load and performance of MSW co‑disposal in cement kilns [J]. Journal of Building Materials,2024,27(4):299‑308. (in Chinese) [百度学术]
CHENG S C, DING X Y, DONG X X, et al. Immigration, transformation, and emission control of sulfur and nitrogen during gasification of MSW:Fundamental and engineering review [J]. Carbon Resources Conversion, 2023(3):184‑204. [百度学术]
戴前进, 李艺, 方先金. 污泥中硫浓度与产气中硫化氢含量的相关性探讨 [J]. 中国给水排水, 2008(2):36‑39. [百度学术]
DAI Qianjin, LI Yi, FANG Xianjin. Correlation between sulfur concentration in sludge and hydrogen sulfide content in gas production [J]. China Water & Wastewater, 2008(2):36‑39. (in Chinese) [百度学术]
HUANG Y Y, LI H X, JIANG Z W, et al. Migration and transformation of sulfur in the municipal sewage sludge during disposal in cement kiln [J]. Waste Management, 2018, 77:537‑544. [百度学术]
REN G H, LAN X, GUO Z C. Difference of flue gas desulfurization performance and desulfurization mechanism of steel slag obtained under various cooling methods [J]. Journal of Environmental Chemical Engineering, 2022, 10(6):109026. [百度学术]
梁晓彤, 李博, 屈世存. 原油催化氧化脱硫用催化剂的制备及性能评价 [J]. 化学工程师, 2024, 38(1):96‑100. [百度学术]
LIANG Xiaotong, LI Bo, QU Shicun. Preparation and performance evaluation of catalysts for catalytic oxidative desulfurization of crude oil [J]. Chemical Engineer, 2024, 38(1):96‑100. (in Chinese) [百度学术]
ZHOU L, DU Y, GUO Z R, et al. Promotion of oxidative desulfurization performance of model fuel by 3DOM Ce‑doped HPW/TiO2 material [J]. Arabian Journal of Chemistry, 2020, 13(2):4043‑4052. [百度学术]
PATIL C R, RODE C V. Synthesis of diesel additives from fructose over PWA/SBA‑15 catalyst [J]. Fuel, 2018, 217:38‑44. [百度学术]
DU Y, JIN Y, CHEN W, et al. Designed formation of polyoxometallate‑based mesoporous titania composites by a solvent‑free chemical self‑assembly method for oxidative desulfurization of diesels [J]. Energy & Fuels, 2022, 36(1):361‑369. [百度学术]
XIONG H L, ZHOU H R, SUN G, et al. Solvent‐free self‐assembly for scalable preparation of highly crystalline mesoporous metal oxides [J]. Angewandte Chemie International Edition, 2020, 59(27):11053‑11060. [百度学术]
AHMAD E, PANT K K, HAIDER M A. Synthesis and application of TiO2‑supported phosphotungstic acid for ethyl levulinate production [J]. Materials Science for Energy Technologies, 2022, 5:189‑196. [百度学术]
CHENG S, HUANG J C, LUO R, et al. Experimental and theoretical study on the transformation of typical organic sulfur during hydrothermal carbonization of sludge [J]. Fuel, 2023, 332(Part 1):126064. [百度学术]
LI P S, HU Y, YU W, et al. Investigation of sulfur forms and transformation during the co‑combustion of sewage sludge and coal using X‑ray photoelectron spectroscopy [J]. Journal of Hazardous Materials, 2009, 167(1/2/3):1126‑1132. [百度学术]
LIU S, WEI M M, QIAO Y, et al. Release of organic sulfur as sulfur‑containing gases during low temperature pyrolysis of sewage sludge [J]. Proceedings of the Combustion Institute, 2015, 35(3):2767‑2775. [百度学术]
YANG H W, ZHANG Q, ZHANG J H, et al. Cellulose nanocrystal shelled with poly(ionic liquid)/polyoxometalate hybrid as efficient catalyst for aerobic oxidative desulfurization [J]. Journal of Colloid and Interface Science, 2019, 554:572‑579. [百度学术]
KANG D C, PYEN S H, KIM E J, et al. Hydrogen‑free carbon monoxide production through decomposition of formic acid over a HPW/TiO2 catalyst [J]. Journal of Industrial and Engineering Chemistry, 2023, 123:396‑403. [百度学术]
QI Z Y, LI H F, CHEN J F, et al. Intensification of oxidative desulfurization by Zr(Ⅳ)‑ionic liquid‑HPW composite activating H2O2 system and mechanism insight [J]. Fuel, 2022, 322:124231. [百度学术]
ZHANG M, LIU J Q, LI H P, et al. Tuning the electrophilicity of vanadium‑substituted polyoxometalate based ionic liquids for high‑efficiency aerobic oxidative desulfurization [J]. Applied Catalysis B:Environmental, 2020, 271:118936. [百度学术]