摘要
使用工业副产品矿渣和再生骨料制备碱矿渣再生混凝土(AARAC),符合中国“双碳”和“可持续发展”战略目标的要求.通过13组试件的基本力学性能试验,研究了再生骨料取代率和钢纤维掺量对AARAC基本力学性能的影响,并从原材料端对其进行了碳排放评价.结果表明:当再生骨料取代率为75%时,AARAC的力学性能指标与普通水泥混凝土相当;掺加钢纤维有效缓解了再生骨料对AARAC力学性能的负面影响;当再生骨料取代率为50%、钢纤维掺量为0.5%时,AARAC的力学性能优良,可持续性强;基于本文及相关文献的试验数据,建立了AARAC力学强度和弹性模量的计算公式,计算结果与试验结果吻合良好.
用低碳排放的工业固废矿渣替代传统水泥以及用建筑废弃混凝土再生骨料(RA)取代天然骨料,发展碱矿渣再生混凝土(AARAC),可以大幅降低混凝土生产过程中的碳排放,实现建筑废弃物的循环利用,符合中国“双碳”和“可持续发展”战略目标的要求.相关研究结果表明,与普通水泥混凝土(OPC)相比,在相同水胶比条件下,碱矿渣混凝土(AAC)的早期强度更
然而,与OPC类似,AARAC的抗拉强度低,脆性较大,延性和韧性较差.为解决其固有缺点,在自密实碱矿渣基体中掺入钢纤维(SF),其劈裂抗拉强度和弯曲强度显著增强,且增强效果与SF掺量呈正相
本文对13组试件进行了基本力学性能试验,建立了AARAC力学强度和弹性模量的计算公式.最后,采用生命周期评价(LCA)方法从原材料生产端对AARAC的碳排放进行了评价.
选用武汉微神科技有限公司生产的S95磨细矿渣粉制备C40碱矿渣混凝土,水胶比(质量比,文中涉及的水胶比、减水率等除特别说明外均为质量比或质量分数)为0.42;采用P·O 42.5普通硅酸盐水泥制备OPC试件作为对照组.细骨料为河砂,细度模数2.7;粗骨料采用连续级配天然碎石(NA)和由武汉某建筑拆除物加工所得的RA,其基本性能指标如
Type | Aggregate size/mm | Bulk density/(kg· | Water absorption(by mass)/% | Crushing value(by mass)/% | Specific gravity/(kg· |
---|---|---|---|---|---|
NA | 5-20 | 1 431 | 1.68 | 9.7 | 2 873 |
RA | 5-20 | 1 366 | 5.85 | 15.3 | 2 655 |
SF掺量(体积分数)为0%、0.5%、1.0%和1.5%,RA取代率(RA)为0%、25%、50%、75%和100%,试件的配合比见
Specimen | Cement | Slag | NA | RA | River sand | SF | Sodium silicate | Sodium hydroxide | Water | Water reducer |
---|---|---|---|---|---|---|---|---|---|---|
OPC | 417.0 | 0 | 1 086.0 | 0 | 724.0 | 0 | 0 | 0 | 175.0 | 3.3 |
RA00SF00 | 0 | 417.0 | 1 086.0 | 0 | 724.0 | 0 | 161.8 | 3.6 | 84.0 | 3.3 |
RA25SF00 | 0 | 417.0 | 814.5 | 271.5 | 724.0 | 0 | 161.8 | 3.6 | 84.0 | 3.3 |
RA50SF00 | 0 | 417.0 | 543.0 | 543.0 | 724.0 | 0 | 161.8 | 3.6 | 84.0 | 3.3 |
RA75SF00 | 0 | 417.0 | 271.5 | 814.5 | 724.0 | 0 | 161.8 | 3.6 | 84.0 | 3.3 |
RA100SF00 | 0 | 417.0 | 0 | 1 086.0 | 724.0 | 0 | 161.8 | 3.6 | 84.0 | 3.3 |
RA50SF05 | 0 | 417.0 | 543.0 | 543.0 | 724.0 | 39.3 | 161.8 | 3.6 | 84.0 | 3.3 |
RA50SF10 | 0 | 417.0 | 543.0 | 543.0 | 724.0 | 78.5 | 161.8 | 3.6 | 84.0 | 3.3 |
RA50SF15 | 0 | 417.0 | 543.0 | 543.0 | 724.0 | 117.8 | 161.8 | 3.6 | 84.0 | 3.3 |
RA00SF10 | 0 | 417.0 | 1 086.0 | 0 | 724.0 | 78.5 | 161.8 | 3.6 | 84.0 | 3.3 |
RA25SF10 | 0 | 417.0 | 814.5 | 271.5 | 724.0 | 78.5 | 161.8 | 3.6 | 84.0 | 3.3 |
RA75SF10 | 0 | 417.0 | 271.5 | 814.5 | 724.0 | 78.5 | 161.8 | 3.6 | 84.0 | 3.3 |
RA100SF10 | 0 | 417.0 | 0 | 1 086.0 | 724.0 | 78.5 | 161.8 | 3.6 | 84.0 | 3.3 |
Specimen | fcu/MPa | fc/MPa | fst/MPa | Ec/GPa | ||||
---|---|---|---|---|---|---|---|---|
3 d | 7 d | 28 d | 28 d | 3 d | 7 d | 28 d | 28 d | |
OPC | 33.39 | 42.61 | 47.53 | 33.62 | 2.88 | 2.98 | 3.26 | 20.45 |
RA00SF00 | 57.33 | 59.64 | 65.50 | 45.23 | 3.79 | 4.05 | 4.57 | 21.08 |
RA25SF00 | 52.99 | 56.74 | 60.10 | 43.30 | 3.74 | 3.94 | 4.68 | 20.38 |
RA50SF00 | 50.89 | 53.82 | 59.40 | 44.60 | 3.39 | 3.71 | 4.56 | 19.54 |
RA75SF00 | 45.46 | 46.40 | 52.30 | 39.23 | 3.29 | 3.41 | 4.01 | 17.61 |
RA100SF00 | 32.4 | 41.99 | 44.63 | 27.28 | 2.73 | 3.07 | 3.92 | 12.00 |
RA50SF05 | 51.57 | 53.04 | 58.38 | 42.96 | 3.78 | 4.20 | 4.72 | 19.81 |
RA50SF10 | 53.30 | 54.44 | 61.05 | 45.03 | 3.98 | 4.42 | 4.91 | 20.36 |
RA50SF15 | 48.82 | 54.48 | 68.32 | 45.80 | 4.03 | 4.95 | 6.16 | 20.83 |
RA00SF10 | 59.78 | 61.48 | 75.78 | 39.64 | 4.40 | 4.86 | 5.23 | 21.44 |
RA25SF10 | 60.55 | 63.33 | 65.58 | 46.61 | 4.03 | 4.55 | 4.77 | 21.19 |
RA75SF10 | 47.94 | 54.25 | 56.75 | 44.16 | 3.90 | 4.23 | 4.28 | 18.66 |
RA100SF10 | 30.94 | 43.07 | 45.12 | 31.42 | 3.38 | 3.80 | 4.18 | 15.01 |
(1)试件RA00SF00的28 d立方体抗压强度可达65 MPa以上,相比试件OPC提高了38%;试件RA25SF00、RA50SF00、RA75SF00、RA100SF00的28 d立方体抗压强度分别为60.10、59.40、52.30、44.63 MPa,均满足强度设计值要求;试件RA50SF00和RA75SF00的28 d立方体抗压强度与试件OPC相比分别提高了25%、10%,但试件RA100SF00的28 d立方体抗压强度略有下降.其原因主要在于:AAC的基体致密,具有少量小孔隙,AARAC中NA‑基体的界面过渡区较为致
(2)AAC的28 d立方体抗压强度随着SF掺量的增加而增大,但其增长幅度有限.原因在于SF天然的亲水性,导致SF‑基体界面处形成“水膜层”,SF表面处的水胶比较基体略高,在水膜层中最先生成氢氧化钙(CH)和钙矾石(AFt).此时由于水胶比较高,水化反应充分,使得SF‑基体界面处CH凝胶和低密度的C‑S‑H凝胶呈定向排列,阻止了C‑S‑H与SF的接触,使SF紧靠界面处的基体成为高孔隙率结
(3)随着水化的进一步进行,CH的含量增加,基体内形成大量多孔疏松的弱结构,严重削弱了混凝土基体.试件RA00SF00、RA25SF00、RA50SF00、RA75SF00、RA100SF00掺加1.0%SF后的28 d立方体抗压强度分别增长了17%、9%、3%、8%、11%,这是由于SF的桥接作用和高弹性模量,缓解了掺入RA对立方体抗压强度的负面影响.掺加SF使试件RA50SF10的3 d抗压强度相较RA50SF00增加了41%,但试件RA50SF10的28 d抗压强度相较于RA50SF00仅增加了3%,表明SF的加入对AARAC早期强度的贡献较大.
由
由
(1)试件RA75SF00和RA100SF00的28 d劈裂抗拉强度相比试件RA00SF00分别下降了12%、14%,这是由于高RA取代率增大了基体中新旧界面的数量,导致劈拉破坏的薄弱区增多.旧界面断裂能比新界面低,在荷载作用下对高RA取代率的混凝土劈裂抗拉强度影响更大.但试件RA100SF00的28 d劈裂抗拉强度相比试件OPC提高了20%以上.
(2)掺入1.0% SF使试件RA00SF00、RA25SF00、RA50SF00、RA75SF00、RA100SF00的28 d劈裂抗拉强度分别提高了14%、2%、8%、7%、7%.这表明在劈拉作用下,裂缝开展所需消耗的能量以及RA带来的不利影响,可以通过SF的桥接作用和NA自身强度的抵抗来抵消.
(3)试件RA50SF05、RA50SF10、RA50SF15的28 d劈裂抗拉强度相比试件RA50SF00分别提高了4%、8%、35%.
由
(1)试件RA00SF00的弹性模量较试件OPC提高了3%.矿渣在碱性环境中水化生成大量的C‑S‑H凝胶,由于其优异的微观力学性能而具有较高的弹性模
(2)随着SF掺量的增加,AARAC的弹性模量不断增大;当SF掺量为0.5%时,试件的弹性模量出现小幅度降低.这是由于:①纤维数量有限,其裂缝桥接作用难以抵消SF掺入带来的基体损伤所引起的性能下降;②SF‑基体是弱界面,其显微硬度和弹性模量小于混凝土基
采用线性回归方式,结合文献[
(1) |
(2) |
(3) |

图1 轴心抗压强度实际值和预测值比较
Fig.1 Comparisons between predicted results and test results of cubic compressive strength
同理,采用线性回归方式,结合文献[

图2 立方体抗压强度实际值和预测值比较
Fig.2 Comparisons between prediction and test results of splitting tensile strength
(4) |
(5) |
(6) |
SFRAARAC作为一种新型建筑材料,其弹性模量的预测公式目前暂无规范可以参考.本文将试验结果与普通水泥混凝土、碱激发混凝土等相关规范和文献提出的计算方
Reference | Equation | Note |
---|---|---|
[ | 15 MPa≤fc≤80 MPa | |
[ | Alkali‑activated slag concrete | |
[ | Normal‑strength concrete and fc≤40 MPa | |
[ | 21 MPa≤fc≤83 MPa | |
[ | fc≤80 MPa | |
[ | Steel fiber‑reinforced alkali‑activated slag concrete |

图3 弹性模量模型预测与试验结果对比
Fig.3 Comparison between model predicted value and experimental value of elastic modulus
(7) |
综上,SFRAARAC的宏观力学及微观性能受到多种因素影响,建立弹性模量预测关系式并用于实践,还需进一步定量分析SFRAARAC的弹性模量预测关系式.
生命周期评价(LCA)是评价一种产品从“摇篮到坟墓”全过程总体环境影响的成熟手段.相关研究表明,混凝土原材料生产排出的碳排放量占混凝土制造所排出碳排放量总量的84%~93
(8) |
式中:Csc为原材料生产阶段的碳排放量,kgCO2‑eq/
Slag | NA | RA | Sand | SF | Sodium silicate | Sodium hydroxide | Water | PC |
---|---|---|---|---|---|---|---|---|
|
0.002 |
0.001 |
0.002 |
1.496 |
0.700 |
1.514 |
0.000 |
0.735 |
Specimen | Slag | NA | RA | Sand | SF | Sodium silicate | Sodium hydroxide | Water | PC | Total |
---|---|---|---|---|---|---|---|---|---|---|
RA00SF00 | 0 | 2.367 5 | 0 | 1.817 2 | 0 | 113.225 0 | 5.435 3 | 0.014 3 | 0 | 122.859 3 |
RA25SF00 | 0 | 1.775 6 | 0.295 9 | 1.817 2 | 0 | 113.225 0 | 5.435 3 | 0.014 3 | 0 | 122.563 3 |
RA50SF00 | 0 | 1.183 7 | 0.591 9 | 1.817 2 | 0 | 113.225 0 | 5.435 3 | 0.014 3 | 0 | 122.267 4 |
RA75SF00 | 0 | 0.591 9 | 0.887 8 | 1.817 2 | 0 | 113.225 0 | 5.435 3 | 0.014 3 | 0 | 121.971 5 |
RA100SF00 | 0 | 0 | 1.183 7 | 1.817 2 | 0 | 113.225 0 | 5.435 3 | 0.014 3 | 0 | 121.675 5 |
RA50SF05 | 0 | 1.183 7 | 0.591 9 | 1.817 2 | 58.737 6 | 113.225 0 | 5.435 3 | 0.014 3 | 0 | 181.005 0 |
RA50SF10 | 0 | 1.183 7 | 0.591 9 | 1.817 2 | 117.475 3 | 113.225 0 | 5.435 3 | 0.014 3 | 0 | 239.742 6 |
RA50SF15 | 0 | 1.183 7 | 0.591 9 | 1.817 2 | 176.212 9 | 113.225 0 | 5.435 3 | 0.014 3 | 0 | 298.480 3 |
RA00SF10 | 0 | 2.367 5 | 0 | 1.817 2 | 117.475 3 | 113.225 0 | 5.435 3 | 0.014 3 | 0 | 240.334 5 |
RA25SF10 | 0 | 1.775 6 | 0.295 9 | 1.817 2 | 117.475 3 | 113.225 0 | 5.435 3 | 0.014 3 | 0 | 240.038 6 |
RA75SF10 | 0 | 0.591 9 | 0.887 8 | 1.817 2 | 117.475 3 | 113.225 0 | 5.435 3 | 0.014 3 | 0 | 239.446 7 |
RA100SF10 | 0 | 0 | 1.183 7 | 1.817 2 | 117.475 3 | 113.225 0 | 5.435 3 | 0.014 3 | 0 | 239.150 8 |
OPC | 0 | 2.367 5 | 0 | 1.817 2 | 0 | 0 | 0 | 0.029 8 | 306.495 0 | 310.709 5 |
由
添加SF可有效提高AARAC的力学性能,但其碳排放量也随之提高.因此,考虑力学性能和碳排放量进行环境效益评
(9) |
式中:Li(Lcu、Lst、Lc)分别为对应fi(fcu、fst、fc)与碳排放量的环境效益因子.
Specimen | Lcu | Lst | Lc | Specimen | Lcu | Lst | Lc |
---|---|---|---|---|---|---|---|
OPC | 6.54 | 95.31 | 9.24 | RA50SF10 | 3.93 | 48.83 | 5.32 |
RA00SF00 | 1.88 | 26.88 | 2.72 | RA50SF15 | 4.37 | 48.45 | 6.52 |
RA25SF00 | 2.04 | 26.19 | 2.83 | RA00SF10 | 3.17 | 45.95 | 6.06 |
RA50SF00 | 2.06 | 26.81 | 2.74 | RA25SF10 | 3.66 | 50.32 | 5.15 |
RA75SF00 | 2.33 | 30.42 | 3.11 | RA75SF10 | 4.22 | 55.95 | 5.42 |
RA100SF00 | 2.73 | 31.04 | 4.46 | RA100SF10 | 5.30 | 57.21 | 7.61 |
RA50SF05 | 3.10 | 38.35 | 4.21 |
由
(1)当再生骨料取代率分别为50%、75%时,碱矿渣再生混凝土(AARAC)的28 d立方体抗压强度较普通水泥混凝土(OPC)提高了25%、10%.钢纤维的桥接作用有效补偿了再生骨料取代对碱矿渣混凝土(AAC)宏观力学性能的削弱作用,且钢纤维对抗拉强度的增强效果优于抗压强度.
(2)钢纤维增强碱矿渣再生混凝土(SFRAARAC)是一种多相复合胶凝材料.基于本文和相关文献试验结果,引入再生骨料取代率和钢纤维增强系数,建立了立方体抗压强度与轴心抗压强度、劈裂抗拉强度、弹性模量之间的转换预测方程,方程的适用性更强.
(3)AAC的碳排放总量显著低于OPC,碳减排的潜力主要在于高炉矿渣取代水泥.AAC的碳排放量仅为OPC的39.54%,矿渣取代水泥使碳排放量降低了60.46%.再生骨料取代率为50%且钢纤维掺量为0.5%的试件RA50SF05不仅具有优良的力学性能,同时生态环境效益良好,适宜推广应用.
参考文献
AYDIN S, BARADAN B. Effect of activator type and content on properties of alkali‑activated slag mortars[J]. Composites Part B: Engineering, 2014, 57:166‑172. [百度学术]
王怀亮. 碱激发混凝土单双轴压强度和变形特性研究[J]. 建筑材料学报, 2020, 23(1):40‑47, 63. [百度学术]
WANG Huailiang. Uniaxial and biaxial compressive strength and deformation characteristic of alkali‑activated concrete[J]. Journal of Building Materials, 2020, 23(1):40‑47, 63. (in Chinese) [百度学术]
丁兆洋, 苏群, 李明泽, 等. 水玻璃模数对地聚物再生混凝土力学性能影响[J]. 建筑材料学报, 2023, 26(1):61‑70. [百度学术]
DING Zhaoyang, SU Qun, LI Mingze, et al. Water‑glass modulus on mechanical properties of geopolymer recycled aggregate concrete[J]. Journal of Building Materials, 2023, 26(1):61‑70. (in Chinese) [百度学术]
王超然. 碱激发矿渣再生混凝土力学性能与耐久性试验研究[D]. 哈尔滨:哈尔滨工业大学, 2019. [百度学术]
WANG Chaoran. Experimental study on mechanical performance and durability of recycled aggregate based alkali activated slag concrete[D]. Harbin:Harbin Institute of Technology, 2019. (in Chinese) [百度学术]
NANAYAKKARA O, GUNASEKARA C, SANDANAYAKE M, et al. Alkali activated slag concrete incorporating recycled aggregate concrete:Long term performance and sustainability aspect[J]. Construction and Building Materials, 2020, 271:121512. [百度学术]
NIS A, EREN N Q, CEVIK A. Effects of nanosilica and steel fibers on the impact resistance of slag based self‑compacting alkali‑activated concrete[J]. Ceramics International, 2021, 47(17):23905‑23918. [百度学术]
BERNAL S, GUTIERREZ R D, DELVASTO S, et al. Performance of an alkali‑activated slag concrete reinforced with steel fibers[J]. Construction and Building Materials, 2010, 24(2):208‑214. [百度学术]
SUN B B, SUN Y B, YE G, et al. A mix design methodology of slag and fly ash‑based alkali‑activated paste[J]. Cement and Concrete Composites, 2022, 126:104368. [百度学术]
XIE J H, WANG J J, RAO R, et al. Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate[J]. Composite Part B:Engineering, 2019, 164:179‑190. [百度学术]
LI B, WU C, WANG S N, et al. Monotonic and cyclic compressive behavior of ultra‑high performance concrete with coarse aggregate:Experimental investigation and constitutive model[J]. Journal of Building Engineering, 2023, 68:106002. [百度学术]
FANG G H, WANG Q, ZHANG M Z. Micromechanical analysis of interfacial transition zone in alkali‑activated fly ash‑slag concrete[J]. Cement and Concrete Composites, 2021, 119:103990. [百度学术]
El‑HASSAN H, MEDLJY J, El‑MAADDAWY T. Properties of steel fiber‑reinforced alkali‑activated slag concrete made with recycled concrete aggregates and dune sand[J]. Sustainability, 2021, 13:8017. [百度学术]
LI B, XU L H, CHI Y, et al. Experimental investigation on the stress‑strain behavior of steel fiber reinforced concrete subjected to uniaxial cyclic compression[J]. Construction and Building Materials, 2017, 140:109‑118. [百度学术]
陈庞, 王政轩, 张健新, 等. 钢纤维增强碱矿渣再生骨料混凝土的力学性能[J/OL]. 土木与环境工程学报, 2023:1‑9[20240126]. https://kns.cnki.net/kcms/detail/50.1218.TU.20221129.2347.002.html. [百度学术]
CHEN Pang, WANG Zhengxuan, ZHANG Jianxin, et al. Mechanical properties of fiber reinforced alkali‑slag recycled aggregate concrete[J/OL]. Journal of Civil and Environmental Engineering, 2023:1‑9[20240126]. https://kns.cnki.net/kcms/detail/50.1218.TU.20221129.2347.002.html.(in Chinese) [百度学术]
谢萌. 纤维增强地聚物再生混凝土基本力学性能试验研究[D]. 天津:天津大学, 2021. [百度学术]
XIE Meng. Experimental study on mechanical properties of fiber reinforced geopolymer concrete with recycled aggregate[D]. Tianjin:Tianjin University, 2021. (in Chinese) [百度学术]
SHI X S, COLLINS F G, ZHAO X L, et al. Mechanical properties and microstructures analysis of fly ash geopolymeric recycled concrete[J]. Journal of Hazardous Materials, 2012, 237/238:20‑29. [百度学术]
曾宪帅. 纤维增强地聚物混凝土力学性能及韧性试验研究[D]. 成都:西南交通大学, 2021. [百度学术]
ZENG Xianshuai. Experimental study on mechanical properties and toughness of fiber‑reinforced geopolymer concrete[D]. Chengdu:Southwest Jiaotong University, 2021. (in Chinese) [百度学术]
XIE J H, WANG J J, ZHANG B X, et al. Physicochemical properties of alkali activated GGBS and fly ash geopolymeric recycled concrete[J]. Construction and Building Materials, 2019, 204:384‑398. [百度学术]
LEE N K, LEE H K. Setting and mechanical properties of alkali‑activated fly ash/slag concrete manufactured at room temperature[J]. Construction and Building Materials, 2013, 47:1201‑1209. [百度学术]
赵岩伟. 地聚物再生混凝土受压基本力学性能研究[D]. 哈尔滨:哈尔滨工业大学, 2018. [百度学术]
ZHAO Yanwei. Study on basic mechanical properties of geopolymer recycled concrete under compression loading[D]. Harbin:Harbin Institute of Technology, 2018. (in Chinese) [百度学术]
HASNAOUI A, GHORBEL E, WARDEH G. Performance of metakaolin/slag‑based geopolymer concrete made with recycled fine and coarse aggregates[J]. Journal of Building Engineering, 2021, 42:102813. [百度学术]
中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010—2010[S]. 北京:中国建筑工业出版社, 2015. [百度学术]
Ministry of Housing and Urban‑Rural Development of the People’s Republic of China. Code for design of concrete structures:GB 50010—2010[S]. Beijing:China Architecture & Building Press, 2015. (in Chinese) [百度学术]
El‑HASSAN H, ELKHOLY S. Performance evaluation and microstructure characterization of steel fiber‑reinforced alkali‑activated slag concrete incorporating fly ash[J]. Journal of Materials in Civil Engineering, 2019, 31(10):0002872. [百度学术]
American Concrete Institute. Building code requirements for structural concrete:ACI Committee 318[S]. Farmington Hills:American Concrete Institute, 2017. [百度学术]
American Concrete Institute. State of the art report on high‑strength concrete:ACI Committee 363[S]. Farmington Hills:American Concrete Institute, 1992. [百度学术]
CEB. Evaluation of the time dependent behavior of concrete:CEB‑FIP[S]. [S.l.]:CEB Bulletin D’information, 1990. [百度学术]
ELKHOLY S, EL‑HASSAN H. Mechanical and micro‑structure characterization of steel fiber‑reinforced geopolymer concrete[J]. Journal of Materials in Civil Engineering, 2019, 31(10):04019223 [百度学术]
FERNANDO S, GUNASEKARA C, LAW D W, et al. Life cycle assessment and cost analysis of fly ash‑rice husk ash blended alkali‑activated concrete[J]. Journal of Environmental Management, 2021, 295:113140. [百度学术]
中华人民共和国住房和城乡建设部. 建筑碳排放计算标准:GB/T 51366—2019[S]. 北京:中国建筑工业出版社, 2019. [百度学术]
Ministry of Housing and Urban‑Rural Development of the People’s Republic of China. Standard for building carbon emission calculation:GB/T 51366—2019[S]. Beijing:China Architecture & Building Press, 2019. (in Chinese) [百度学术]
SHI Y, LONG G C, ZENG X H, et al. Green ultra‑high performance concrete with very low cement concrete[J]. Construction and Building Materials, 2021, 303:124482. [百度学术]
DAMRONGWIRRYANUPAP N, SRIKHAMMA T, PLONGKRATHOK C, et al. Assessment of equivalent substrate stiffness and mechanical properties of sustainable alkali‑activated concrete containing recycled concrete aggregate[J]. Case Studies in Construction Materials, 2022, 16:e00982. [百度学术]
LEE J, LEE T, JEONG J, et al. Mix design optimization and environmental impact assessment of low carbon materials containing alkali‑activated slag and high CaO fly ash[J]. Construction and Building Materials, 2021, 267:120932. [百度学术]