摘要
研究了“灯芯效应”下珊瑚骨料混凝土在M
远海岛礁基础设施为驻岛军民生产生活及海洋资源开发利用提供了条件. 然而,岛礁地区工程建设资源有限、交通不便,严重制约了岛礁的开发进
珊瑚骨料具有质轻、疏松多孔、压缩性高和吸水性强等特
南海岛礁基础设施常年处于高温、高湿和高盐环境,学者们针对盐雾
本文在实验室中模拟岛礁高温、高湿和高盐环境,采用半浸泡试验研究珊瑚骨料混凝土在“灯芯效应”与复合离子共同影响下的C
水泥采用P·O 42.5普通硅酸盐水泥,细度为476
Material | SiO2 | CaO | MgO | Al2O3 | SO3 | Fe2O3 | Others |
---|---|---|---|---|---|---|---|
Cement | 21.18 | 63.42 | 3.12 | 5.02 | 2.30 | 3.14 | 1.82 |
Fly ash | 52.42 | 5.85 | 1.18 | 31.67 | 1.39 | 3.23 | 4.26 |
Slag | 31.35 | 36.97 | 6.77 | 14.74 | 0.49 | 0.34 | 9.34 |
Silica fume | 85.04 | 1.63 | 3.78 | 2.04 | 0.32 | 1.97 | 5.22 |
Specimen No. | Mix proportion/(kg· | mw/mb | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cement | Coral coarse aggregate | Coral fine aggregate | Fly ash | Slag | Silica fume | Water reducing admixture | Pre‑wet water | Mixing water | ||
C1/FA | 408.00 | 736.00 | 904.00 | 72.00 | 4.80 | 131.20 | 192.00 | 0.67 | ||
C2/FA | 446.25 | 600.00 | 900.00 | 78.75 | 5.25 | 120.00 | 183.75 | 0.58 | ||
C3/FA | 595.33 | 506.00 | 768.00 | 107.33 | 7.03 | 102.00 | 172.67 | 0.39 | ||
C2/SP | 367.50 | 600.00 | 900.00 | 157.50 | 5.25 | 120.00 | 183.75 | 0.58 | ||
C2/SF | 498.75 | 600.00 | 900.00 | 26.25 | 5.25 | 120.00 | 183.75 | 0.58 |
首先将粗、细珊瑚骨料倒入搅拌机中干拌50 s混合均匀,加入预湿水再次搅拌均匀,静置5~6 min;然后将水泥、粉煤灰、硅灰和矿渣加入进行干拌;最后加入拌和水和适量减水剂搅拌2 min. 将拌和好的珊瑚骨料混凝土装入100 mm×100 mm×400 mm模具内,放于振动台上振捣抹平;塑料膜密封静置24 h,拆除模具,并将试件置于(20±2) ℃、相对湿度95%的标准养护室内养护90 d.
为模拟岛礁湿热高盐及构件半浸泡环境,搭建密封室,并在其内放置热风机、雾化器和温湿度传感器.试验温度设定为(28±2) ℃、相对湿度为(85±10)%,采用控制箱对棚内温湿度进行实时监控. 将不同配合比珊瑚骨料混凝土试件立式半浸泡于3.5%NaCl(R1)、3.5%NaCl+5%Na2SO4(R2)和3.5%NaCl+5%MgSO4(R3)这3种盐溶液中10、30、60 d,浸泡高度为100 mm. 岛屿湿热高盐半浸泡环境模拟原理示意图与试验装置如

图1 岛礁湿热高盐半浸泡环境模拟原理示意图与试验装置
Fig.1 Schematic diagram and experiment device of simulating hygrothermal and salinity semi‑immersion environment
待浸泡至相应龄期,将试件置于50 ℃下干燥至恒重后分层钻取粉末,其中半浸泡10 d的试件取样高度为140、180、220 mm;半浸泡30、60 d的试件取样高度分别增至260、300 mm. 为保证每个高度不同深度能够收集到足量混凝土粉末,沿试件高度方向每20 mm钻取5个直径为12 mm的孔,沿深度方向每5 mm为1层,共取10层,取样示意图如

图2 半浸泡珊瑚骨料混凝土粉末取样示意图
Fig.2 Semi‑immersed coral aggregate concrete powder sampling diagram (size: mm)
选用型号为PCI‑1的C
(1) |
式中:M为C
选用综合热分析方法对半浸泡珊瑚骨料混凝土侵蚀产物进行分析. 试验前,采用80 μm的筛子对粉样进行筛分,取15~20 mg粉末进行综合热分析试验. 根据质量变化,绘制热重差分曲线. 由不同温度段物质分解导致的失重,判断该温度区段分解的物质成分或种类. 根据质量守恒定理,所测得物质的质量百分比(W,%)按
(2) |
式中:Wa和Wb为所测得物质分解前、后混凝土剩余质量百分比,%;M1为该物质分解前的相对分子质量;M2为该物质分解后气体的相对分子质量.
侵蚀前期混凝土试件表面的盐结晶现象不明显,一方面是由于预湿珊瑚骨料的内养护作用促进了水泥浆体进一步水化,使珊瑚骨料混凝土骨料界面过渡区孔隙结构较普通混凝土更加致
C2组试件在3种溶液(R1、R2和R3)中浸泡60 d的表观形貌如

图3 C2组试件在3种溶液中半浸泡60 d的表观形貌
Fig.3 Apparent appearance of C2 group semi‑immersed specimen in three kinds of solutions for 60 d
试件在3种溶液(R1,R2和R3)中浸泡60 d的质量增长率如

图4 试件在3种溶液中半浸泡60 d时的质量增长率
Fig.4 Mass growth rate of semi‑immersed specimens in three kinds of solutions for 60 d
半浸泡在R3溶液中的试件质量增长率随侵蚀龄期t的变化如

图5 半浸泡在R3溶液中的试件质量增长率随侵蚀龄期的变化
Fig.5 Variation of mass growth rate vs. erosion age for different semi‑immersed specimens in R3 solution
在R3溶液中半浸泡10、30、60 d后,试件C2/FA 1/4截面(从试件表面到50 mm深度)处的C

图6 不同侵蚀龄期试件C2/FA中的C
Fig.6 Chloride content profile in specimen C2/FA with different erosion ages (quarter section)
C2组试件在R3溶液中半浸泡60 d时的C

图7 C2组试件在R3溶液中半浸泡60 d时的C
Fig.7 Chloride content profile of C2 group semi‑immersed specimen in R3 solution for 60 d (quarter section)
不同水胶比混凝土试件在R3溶液中半浸泡60 d时的C

图8 不同水胶比混凝土试件在R3溶液中半浸泡60 d时的C
Fig.8 Chloride content profile of different water‑binder ratios specimen in R3 solution for 60 d (quarter section)
试件C2/FA在3种溶液(R1、R2和R3)中半浸泡60 d时的C
3CaO·Al2O3·CaSO4·12H2O(AFm)+2C | (3) |
3CaO·Al2O3·CaSO4·12H2O(AFm)+2SO+2C | (4) |
3CaO·Al2O3·CaCl2·10H2O(Friedel's盐)+3SO+2C | (5) |

图9 试件C2/FA在3种溶液中半浸泡60 d时的C
Fig.9 Chloride content profile of specimen C2/FA in three kinds of solutions for 60 d (quarter section)
当溶液中存在M
MgSO4+Ca(OH)2+2H2O→CaSO4∙2H2O+Mg(OH)2 | (6) |
1.7MgSO4+1.7CaO·SiO2·4H2O→1.7CaSO4∙2H2O+1.7SiO2·MgO·2H2O | (7) |
试件C2/FA在140 mm高度、不同深度(5、50 mm)处的热重分析(TG‑DTG)曲线如

图10 C2/FA试件受侵蚀后的热重分析曲线
Fig.10 TG‑DTG curves of C2/FA specimen after erosion
由

图11 不同溶液侵蚀后各试件中的Ca(OH)2含量
Fig.11 Ca(OH)2 contents in specimens after erosion by different solutions
“灯芯效应”下,环境中的盐溶液以混凝土孔隙的毛细作用为驱动力传输至混凝土内;同时,暴露于空气中的混凝土表面水分蒸发.一段时间后,在混凝土浸泡液面上方形成干湿界面区,水分蒸发与溶液侵蚀达到平衡. 半浸泡珊瑚骨料混凝土中的离子传输示意图如

图12 半浸泡珊瑚骨料混凝土中的离子传输示意图
Fig.12 Schematic diagram of ion transport of semi‑immersed coral aggregate concrete
C
(8) |
式中:D为饱和混凝土孔隙溶液中的C
Lin
(9) |
式中:U为水化活化能,kJ/mol;R为理想气体常数,8.314 J/(mol∙K);T28为养护28 d时的绝对温度,取为293.15 K;T为实际温度,K;为混凝土完全干燥时C
综合考虑混凝土侵蚀龄期、外界环境温度、孔隙水饱和度和养护龄期对C
(10) |
式中:D0为混凝土养护28 d时的C
f(Θ)、f(T)、f(t)和f(tc)由式(
(11) |
(12) |
(13) |
(14) |
式中:a、b和c为拟合常数,分别取为0.000 175、0.010 310和0.182 000;Ea为C
将混凝土内部初始饱和度记为Θ0,初始自由C
, | (15) |
将半浸泡珊瑚骨料混凝土试件中C
半浸泡混凝土接触溶液瞬间,混凝土表面自由C
, | (16) |
由于“灯芯效应”作用下珊瑚骨料混凝土内部C
(17) |
式中:C(xi,y,t)为混凝土侵蚀t时间后在深度xi、高度y处的C
为验证上述模型的有效性,M

图13 试件C2/FAC
Fig.13 Measured C
将模型计算结果与
(1)在半浸泡侵蚀环境下,C
(2)半浸泡侵蚀环境中,溶液中的C
(3)给出了珊瑚骨料混凝土C
参考文献
NIU D T, SU L, LUO Y, et al. Experimental study on mechanical properties and durability of basalt fiber reinforced coral aggregate concrete[J]. Construction and Building Materials, 2020, 237:117628. [百度学术]
牛荻涛,孙振,张路,等. 珊瑚骨料混凝土中钢筋的开始锈蚀模型[J]. 建筑材料学报, 2021, 24(5):977‑985. [百度学术]
NIU Ditao, SUN Zhen, ZHANG Lu, et al. Model of reinforcement incipient corrosion in coral aggregate concrete[J]. Journal of Building Materials, 2021, 24(5):977‑985. (in Chinese) [百度学术]
马林建,李增,陈欣星. 珊瑚混凝土基本特性及工程应用研究进展[J]. 硅酸盐通报, 2018, 37(8):2471‑2477. [百度学术]
MA Linjian, LI Zeng, CHEN Xinxing. Research progress on properties and applications of coral concrete[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(8):2471‑2477. (in Chinese) [百度学术]
LIU X M, CHIA K S, ZHANG M H. Development of lightweight concrete with high resistance to water and chloride‑ion penetration[J]. Cement and Concrete Composites, 2010, 32(10):757‑766. [百度学术]
苏丽,牛荻涛,罗扬,等. 粉煤灰珊瑚骨料混凝土内掺氯离子扩散和吸水性能[J]. 建筑材料学报, 2021, 24(1):77‑86. [百度学术]
SU Li, NIU Ditao, LUO Yang, et al. Inner chloride ion diffusion and capillary water absorption properties of fly ash coral aggregate concrete[J]. Journal of Building Materials, 2021, 24(1):77‑86. (in Chinese) [百度学术]
HUANG D G, NIU D T, SU L, et al. Chloride diffusion behavior of coral aggregate concrete under drying‑wetting cycles[J]. Construction and Building Materials, 2021, 270:121485 [百度学术]
LIU Q F, FENG G L, XIA J, et al. Ionic transport features in concrete composites containing various shaped aggregates:A numerical study[J]. Composite Structures, 2018, 183:371‑380. [百度学术]
张成琳,刘清风. 钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J]. 材料导报, 2022, 36(1):65‑73. [百度学术]
ZHANG Chenglin, LIU Qingfeng. Coupling erosion of chlorides and sulfates in reinforced concrete:A review[J]. Materials Reports, 2022, 36(1):65‑73. (in Chinese) [百度学术]
吴文娟,汪稔,朱长歧. 盐雾对珊瑚骨料混凝土构筑物性能的影响及其机理[J]. 建筑材料学报, 2018, 21(4):600‑607. [百度学术]
WU Wenjuan, WANG Nian, ZHU Changqi. Effect and mechanism of salt spray on properties of coral aggregate concrete structure[J]. Journal of Building Materials, 2018, 21(4):600‑607. (in Chinese) [百度学术]
DA B, YU H F, MA H Y, et al. Chloride diffusion study of coral concrete in a marine environment[J]. Construction and Building Materials, 2016, 123:47‑58. [百度学术]
邓德华,刘赞群,DE SCHUTTER Geert. 关于“混凝土硫酸盐结晶破坏”理论的研究进展[J]. 硅酸盐学报, 2012, 40(2):175‑185. [百度学术]
DENG Dehua, LIU Zanqun, DE SCHUTTER Geert. Research progress on theory of “sulfate salt weathering on concrete”[J]. Journal of the Chinese Ceramic Society, 2012, 40(2):175‑185. (in Chinese) [百度学术]
PUYATE Y T, LAWRENCE C J. Steady state solutions for chloride distribution due to wick action in concrete[J]. Chemical Engineering Science, 2000, 55(16):3329‑3334. [百度学术]
PUYATE Y T, LAWRENCE C J. Wick action at moderate Peclet number[J]. Physics of Fluids, 1998, 10(8):2114‑2116. [百度学术]
罗大明,牛荻涛. 不同水胶比及养护条件对内养护混凝土吸水性能的影响[J]. 建筑结构学报, 2019, 40(1):165‑173. [百度学术]
LUO Daming, NIU Ditao. Influences of water‑to‑cement ratio and curing condition on water absorption of internal curing concrete[J]. Journal of Building Structures, 2019, 40(1):165‑173. (in Chinese) [百度学术]
刘赞群,裴敏,刘厚. 半浸泡混凝土中Na2SO4溶液传输过程[J]. 建筑材料学报, 2020, 23(4):787‑793. [百度学术]
LIU Zanqun, PEI Min, LIU Hou. Transport process of solution in concrete partially immersed in Na2SO4 solution[J]. Journal of Building Materials, 2020, 23(4):787‑793. (in Chinese) [百度学术]
QIAO Z, JIANG L H, YI C, et al. Effect of chloride salt type on chloride binding behavior of concrete[J]. Construction and Building Materials, 2012, 37:512‑517. [百度学术]
韩建国,李克非. 混凝土抗氯离子渗透能力测试方法的适用性[J]. 建筑材料学报, 2015, 18(4):704‑709, 715. [百度学术]
HAN Jianguo, LI Kefei. Adaptability of the evaluation methods of concrete anti‑chloride penetration ability[J]. Journal of Building Materials, 2015, 18(4):704‑709, 715. (in Chinese) [百度学术]
金祖权,孙伟,赵铁军. 在不同溶液中混凝土对氯离子的固化程度[J]. 硅酸盐学报, 2009, 37(7):1068‑1072, 1078. [百度学术]
JIN Zuquan, SUN Wei, ZHAO Tiejun. Chloride binding in concrete exposed to corrosive solutions[J]. Journal of the Chinese Ceramic Society, 2009, 37(7):1068‑1072, 1078. (in Chinese) [百度学术]
刘俊龙,麻海燕,胡蝶. 矿物掺合料对混凝土氯离子扩散行为的时间依赖性的影响[J]. 南京航空航天大学学报, 2011, 43(2):279‑282. [百度学术]
LIU Junlong, MA Haiyan, HU Die. Effect of mineral admixtures on time‑dependence of concrete exposed to chloride diffusion[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2011, 43(2):279‑282. (in Chinese) [百度学术]
王爱国,吕邦成,刘开伟. 珊瑚骨料混凝土性能及微结构的研究进展[J]. 材料导报, 2018, 32(9):1528‑1533. [百度学术]
WANG Aiguo, LIU Bangcheng, LIU Kaiwei. A review of properties and microstructure of coral aggregate concrete[J]. Materials Reports, 2018, 32(9):1528‑1533. (in Chinese) [百度学术]
高云,吴凯,穆松. 基于孔隙结构预测水泥基体的氯离子扩散系数[J]. 建筑材料学报, 2022, 25(4):375‑380. [百度学术]
GAO Yun, WU Kai, MU Song. A pore structure based prediction of chloride diffusivity for cement paste[J]. Journal of Building Materials, 2022, 25(4):375‑380. (in Chinese) [百度学术]
ZHAO G W, LI J P, HAN F, et al. Sulfate‑induced degradation of cast‑in‑situ concrete influenced by magnesium[J]. Construction and Building Materials, 2019, 199:194‑206. [百度学术]
於德美,关博文,申爱琴,等. 非饱和混凝土氯离子传输模型及参数分析[J]. 硅酸盐通报, 2017, 36(4):1130‑1135. [百度学术]
YU Demei, GUAN Bowen, SHEN Aiqin, et al. Chloride transport model and parameter analysis of unsaturated concrete[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(4):1130‑1135. (in Chinese) [百度学术]
LIN G, LIU Y H, XIANG Z H. Numerical modeling for predicting service life of reinforced concrete structures exposed to chloride environments[J]. Cement and Concrete Composites, 2010, 32(8):571‑579. [百度学术]
BAZANT Z P, NAJJAR L J. Nonlinear water diffusion in nonsaturated concrete[J]. Materials & Structures, 1972, 5(1):3‑20. [百度学术]
GERARD B, PIJAUDIER‑CABOT G, LABORDERIE C. Coupled diffusion‑damage modelling and the implications on failure due to strain localisation[J]. International Journal of Solid & Structures, 1998, 35(31/32):4107‑4120. [百度学术]