摘要
利用CO2气体碳化处理再生微粉替代水泥制备砂浆试样,探究了不同替代率下再生微粉对砂浆水化和性能的影响规律.结果表明:当替代率为20%时,与未经处理的再生微粉相比,碳化再生微粉砂浆的1、3 d抗压强度分别提高了66.7%、17.6%;碳化再生微粉主要成分是CaCO3和无定形硅胶,二者在水泥水化早期可与水泥水化产物反应从而发挥火山灰效应,再生微粉中的微细石英砂粉则发挥成核效应,均加速水泥的早期水化进程,显著提升其早期力学性能;在加速碳化处理过程中,再生微粉的固碳量可达自身质量的10.0%;制备砂浆后,其平均单位抗压强度最高可减少18%的CO2排放.
伴随着混凝土的广泛使用,老旧建筑的拆除产生了大量的废弃混凝土.将废弃混凝土制备成再生骨料生产再生砂浆和混凝土是提高建筑固废资源化利用率的有效途
与此同时,2020年中国水泥产量高达23.77亿 t,排放CO2约12亿 t,占全国碳排放总量的10%左右.在双碳战略背景下,控制建筑材料行业温室碳排放的形势尤为严
本文采用再生混凝土微粉替代水泥制备砂浆与净浆,探究了碳化再生微粉对水泥水化和微观结构的影响,并对其碳足迹进行了评价.
水泥为P∙I 52.5纯硅酸盐水泥,比表面积为316
CaO | SiO2 | Al2O3 | Fe2O3 | MgO | SO3 | IL |
---|---|---|---|---|---|---|
63.15 | 19.61 | 7.33 | 3.32 | 2.54 | 2.13 | 2.97 |
采用加速碳化的手段处理再生微粉.处理过程为:先用真空泵将碳化釜抽真空至压力为8×1
利用碳化再生微粉(CMP)和未碳化再生微粉(NMP)分别制备水泥砂浆和净浆.水泥砂浆的配合比见
Mortar | Cement | CMP | NMP | Sand | Water |
---|---|---|---|---|---|
C0 | 1.00 | 0 | 0 | 3.00 | 0.50 |
C0.05 | 0.95 | 0.05 | 0 | 3.00 | 0.50 |
C0.1 | 0.90 | 0.10 | 0 | 3.00 | 0.50 |
C0.2 | 0.80 | 0.20 | 0 | 3.00 | 0.50 |
C0.3 | 0.70 | 0.30 | 0 | 3.00 | 0.50 |
NC0.05 | 0.95 | 0 | 0.05 | 3.00 | 0.50 |
NC0.1 | 0.90 | 0 | 0.10 | 3.00 | 0.50 |
NC0.2 | 0.80 | 0 | 0.20 | 3.00 | 0.50 |
NC0.3 | 0.70 | 0 | 0.30 | 3.00 | 0.50 |
制备水灰比为0.4的水泥净浆,再生微粉替代率α依次为5%、10%、20%、30%.用等温量热计来测试样品的放热速率和放热量.用X射线衍射仪(XRD)和热重分析(TG‑DTG)表征再生微粉碳化前后的成分变化.用扫描电子显微镜(SEM)研究样品的微观结构,观察碳化前后不同产物的微观形貌.
CMP和NMP的XRD图谱及TG‑DTG曲线见

图1 CMP和NMP的XRD图谱及TG‑DTG曲线
Fig.1 XRD patterns and TG‑DTG curves of CMP and NMP
Fine powder | Physically bound water | CH | CaCO3 | CO2 |
---|---|---|---|---|
NMP | 1.1 | 3.3 | 5.5 | 2.4 |
CMP | 1.8 | 1.9 | 24.2 | 10.0 |
水泥砂浆的抗压强度见

图2 水泥砂浆的抗压强度
Fig.2 Compressive strength of cement mortars
需要注意的是,在水化早期,砂浆C0.2的抗压强度明显高于砂浆NC0.2,在1、3 d龄期时分别高66.7%、17.6%;但在28 d龄期时两者的抗压强度基本相等.这可能是因为CMP中含有的无定形硅胶、CaCO3与水泥水化产物发生反应所
为进一步探究再生微粉对水泥早期水化的影响,研究了72 h内具有代表性的净浆C0.2和NC0.2单位水泥水化放热速率和水化放热量,结果见

图3 水泥净浆的单位水泥放热速率和放热量
Fig.3 Unit cement heat release rate and heat release of cement pastes
水化6 h后,砂浆C0.2和NC0.2石英砂颗粒表面的SEM照片及EDS能谱见

图4 水化6 h后砂浆C0.2和NC0.2石英砂颗粒表面的SEM照片及EDS能谱
Fig.4 SEM images and EDS patterns of quartz sand particles of C0.2 and NC0.2 mortars after 6 h hydration
传统设计和评估方法是基于最大化经济效率的原则,包括质量、成本和时间,而“可持续建筑”的新方法强调减少建筑物和基础设施对环境影响的重要
再生微粉碳化后,在一定取代范围内可以替代水泥作为混凝土的胶凝材料.因此CMP不仅可以吸收部分环境中的CO2,同时还可以减少制备混凝土所需的水泥用量,进一步减少因生产水泥而产生的CO2排放.水泥用量为1 000 kg时,水泥和混凝土生产的生命周期见

图5 水泥和混凝土生产的生命周期
Fig.5 Life cycle of cement and concrete production
将碳循环过程与抗压强度相结合,获取砂浆的CO2排放指数E,用来表征单位强度的CO2排放量,评估再生微粉混凝土的可持续性.E的计算式为:
式中:Rα为再生微粉替代率α时砂浆的CO2排放相对值;UR为单位再生微粉固碳量;UC为单位水泥排放量.
砂浆的CO2排放指数见
Mortar | 1 d | 3 d | 7 d | 28 d | ||||
---|---|---|---|---|---|---|---|---|
Absolute | Relative | Absolute | Relative | Absolute | Relative | Absolute | Relative | |
C0 | 3.70 | 1.00 | 2.46 | 1.00 | 2.13 | 1.00 | 1.59 | 1.00 |
C0.05 | 3.60 | 0.97 | 2.82 | 1.15 | 2.03 | 0.95 | 1.72 | 1.08 |
C0.1 | 3.59 | 0.97 | 2.32 | 0.95 | 2.00 | 0.94 | 1.63 | 1.02 |
C0.2 | 3.67 | 0.99 | 2.14 | 0.87 | 1.94 | 0.91 | 1.51 | 0.95 |
C0.3 | 5.84 | 1.58 | 2.28 | 0.93 | 1.74 | 0.82 | 1.39 | 0.88 |
当水泥用量为1 000 kg时,利用式(1)计算得到砂浆的CO2排放量,结果见
Index | C0 | C0.05 | C0.1 | C0.2 | C0.3 |
---|---|---|---|---|---|
CO2 emission/kg | 500 | 470 | 440 | 380 | 320 |
Reduction ratio | 6% | 12% | 24% | 36% |
当CMP替代率为20%时,一方面可以生产出力学性能较好的砂浆,另一方面CMP作为再生胶凝材料可以有效降低砂浆对环境的影响.因此,综合考虑CMP对水泥砂浆力学性能和碳排放的影响,本研究中CMP的最佳替代率为20%,碳减排可达24%.基于当前试验结果以及环境效益考虑,通过掺入CMP来提高普通硅酸盐水泥利用率是合理的.
(1)加速碳化处理将再生微粉里的水泥水化产物转化为碳酸钙和活性硅胶,二者均可与新拌水泥浆发生反应,从而发挥火山灰效应;再生微粉中的微细石英砂颗粒可发挥成核效应,为水泥水化提供额外的成核位点,有效促进水泥早期水化.
(2)与未碳化处理的再生微粉(NMP)相比,利用碳化再生微粉(CMP)替代部分水泥制备的水泥砂浆早期抗压强度有明显提高,CMP替代率为20%砂浆的1、3 d抗压强度比NMP替代率为20%砂浆分别高66.7%、17.6%.
(3)碳化处理可使再生微粉吸收占自身质量10.0%的CO2.碳足迹评估表明,用CMP替代部分水泥制备砂浆,有助于减少材料生产阶段的CO2排放量,提高硅酸盐水泥的使用效率,单位强度最高可减少18%的CO2排放;当CMP替代率为20%时,CO2排放量可减少24%.
参考文献
ZHAN B J, POON C S, SHI C J. CO2 curing for improving the properties of concrete blocks containing recycled aggregates [J]. Cement and Concrete Composites, 2013, 42:1‑8. [百度学术]
ZHAN B J, POON C S, LIU Q, et al. Experimental study on CO2 curing for enhancement of recycled aggregate properties [J]. Construction and Building Materials, 2014, 67:3‑7. [百度学术]
LU B, SHI C J, ZHANG J K, et al. Effects of carbonated hardened cement paste powder on hydration and microstructure of Portland cement [J]. Construction and Building Materials, 2018, 186:699‑708. [百度学术]
肖建庄, 张航华, 唐宇翔,等. 废弃混凝土再生原理与再生混凝土基本问题[J]. 科学通报, 2023, 68(5):510‑523. [百度学术]
XIAO Jianzhuang, ZHANG Hanghua, TANG Yuxiang, et al. Principles for waste concrete recycling and basic problems of recycled concrete [J]. Chinese Science Bulletin, 2023, 68(5):510‑523. (in Chinese) [百度学术]
DUAN Z H, HOU S D, XIAO J Z, et al. Rheological properties of mortar containing recycled powders from construction and demolition wastes [J]. Construction and Building Materials, 2020, 237:117622. [百度学术]
OUYANG X W, WANG L Q, XU S D, et al. Surface characterization of carbonated recycled concrete fines and its effect on the rheology, hydration and strength development of cement paste [J]. Cement and Concrete Composites, 2020, 114:103809. [百度学术]
EVANGELISTA L, GUEDES M, DE BRITO J, et al. Physical, chemical and mineralogical properties of fine recycled aggregates made from concrete waste [J]. Construction and Building Materials, 2015, 86:178‑188. [百度学术]
刘超, 胡天峰, 刘化威, 等. 再生复合微粉对混凝土力学性能及微观结构的影响[J]. 建筑材料学报, 2021, 24(4):726‑735. [百度学术]
LIU Chao, HU Tianfeng, LIU Huawei, et al. Effect of recycle composite micro‑powder on mechanical properties and microstructure of concrete [J]. Journal of Building Materials, 2021, 24(4):726‑735. (in Chinese) [百度学术]
KIM Y J, CHOI Y W. Utilization of waste concrete powder as a substitution material for cement [J]. Construction and Building Materials, 2012, 30:500‑504. [百度学术]
MOON D J, KIM Y B, RYOU J S. An approach for the recycling of waste concrete powder as cementitious materials [J]. Journal of Ceramic Processing Research, 2008, 9(3):278‑281. [百度学术]
王海进,耿欧,赵桂云,等. 再生微粉基本性能及胶砂强度的试验研究 [J]. 混凝土, 2015(8):74‑77. [百度学术]
WANG Haijin, GENG Ou, ZHAO Guiyun,et al. Research of recycled powder basic properties and mortar strength [J]. Concrete, 2015(8):74‑77.(in Chinese) [百度学术]
XUAN D X, ZHAN B J, POON C S. Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates [J]. Cement and Concrete Composites, 2016, 65:67‑74. [百度学术]
ZHAN B J, XUAN D X, POON C S, et al. Mechanism for rapid hardening of cement pastes under coupled CO2‑water curing regime [J]. Cement and Concrete Composites, 2019, 97:78‑88. [百度学术]
ZHAN B J, XUAN D X, POON C S, et al. Multi‑scale investigation on mechanical behavior and microstructural alteration of C‑S‑H in carbonated alite paste [J]. Cement and Concrete Research, 2021, 144:106448. [百度学术]
应敬伟, 蒙秋江, 肖建庄. 再生骨料CO2强化及其对混凝土抗压强度的影响[J]. 建筑材料学报, 2017, 20(2):277‑282. [百度学术]
YING Jingwei, MENG Qiujiang, XIAO Jianzhuang. Effect of CO2‑modified recycle aggregate on compressive strength of concrete [J]. Journal of Building Materials, 2017, 20(2):277‑282. (in Chinese) [百度学术]
KIKUCHI T, KURODA Y. Carbon dioxide uptake in demolished and crushed concrete [J]. Journal of Advanced Concrete Technology, 2011, 9:115‑124. [百度学术]
LI L, XIAO J Z, XUAN D X, et al. Effect of carbonation of modeled recycled coarse aggregate on the mechanical properties of modeled recycled aggregate concrete [J]. Cement and Concrete Composites, 2018, 89:169‑180. [百度学术]
FANG X L, XUAN D X, ZHAN B J, et al. A novel upcycling technique of recycled cement paste powder by a two‑step carbonation process [J]. Journal of Cleaner Production, 2021, 290:125192. [百度学术]
ZHU C H, FANG Y H, WEI H. Carbonation‑cementation of recycled hardened cement paste powder [J]. Construction and Building Materials, 2018, 192:224‑232. [百度学术]
SHEN P L, SUN Y J, LIU S H, et al. Synthesis of amorphous nano‑silica from recycled concrete fines by two‑step wet carbonation [J]. Cement and Concrete Research, 2021, 147:106526. [百度学术]
ZAJAC M, SKOCEK J, DURDZINSKI P, et al. Effect of carbonated cement paste on composite cement hydration and performance [J]. Cement and Concrete Research, 2020, 134:106090. [百度学术]
ATSUSHI I, FUJII M, YAMASAKI A, et al. Development of a new CO2 sequestration process utilizing the carbonation of waste cement [J]. Industrial and Engineering Chemistry Research, 2004, 43:7880‑7887. [百度学术]
MORANDEAU A, THIÉRY M, DANGLA P. Investigation of the carbonation mechanism of CH and C‑S‑H in terms of kinetics, microstructure changes and moisture properties [J]. Cement and Concrete Research, 2014, 56:153‑170. [百度学术]
ZAJAC M, SKIBSTED J, SKOCEK J, et al. Phase assemblage and microstructure of cement paste subjected to enforced, wet carbonation [J]. Cement and Concrete Research, 2020, 130:105990. [百度学术]
BERODIER E, SCRIVENER K. Understanding the filler effect on the nucleation and growth of C‑S‑H [J]. Journal of the American Ceramic Society, 2014, 97(12):3764‑3773. [百度学术]
CHEN T F, BAI M J, GAO X J. Carbonation curing of cement mortars incorporating carbonated fly ash for performance improvement and CO2 sequestration [J]. Journal of CO2 Utilization, 2021, 51:101633. [百度学术]
QIAN D, YU R, SHUI Z H, et al. A novel development of green ultra‑high performance concrete (UHPC) based on appropriate application of recycled cementitious material [J]. Journal of Cleaner Production, 2020, 261:121231. [百度学术]
LIU Q, LI B, XIAO J Z, et al. Utilization potential of aerated concrete block powder and clay brick powder from C&D waste [J]. Construction and Building Materials, 2020, 238:117721. [百度学术]