摘要
首次建立了冲击波-抗压强度、冲击波-回弹-抗压强度的测强曲线,对其推定的火山石混凝土抗压强度进行了验证,并与现行回弹法、超声回弹综合法测强曲线进行对比分析研究.结果表明:现行回弹法、超声回弹综合法推定火山石混凝土抗压强度的误差较大;冲击波法、冲击波-回弹综合法测强曲线更适用于火山石混凝土,且冲击波-回弹综合法测强曲线误差更低,平均相对误差和相对标准差分别为9.3%、11.3%,该曲线对小型构件钻芯验证结果的相对残差在±11%以内,残差在±6 MPa以内.
实际工程中最常用的混凝土抗压强度无损检测方法是回弹法和超声回弹综合
本文建立了火山石混凝土抗压强度和冲击波速的测强曲线,与回弹法、超声回弹综合法测强曲线精度作对比,进一步提出了冲击波-回弹综合法测强曲线,并进行了验证.相关结果为冲击波法推定火山石等多孔骨料混凝土强度提供了第一手技术资料,对多孔骨料在混凝土工程中的应用、无损测强方法精度提高以及相关标准规程的建立具有重要参考价值.
水泥:盈江县允罕水泥有限责任公司P·O 42.5水泥.火山灰:取自腾冲华辉火山石建材开发有限公司,28 d活性指数76%,流动度比98%,比表面积308

图1 火山石的形貌特征
Fig.1 Morphological characteristics of volcanic rock
Loose bulk density/ (kg· | Compact bulk density/(kg· | Apparent density/ (kg· | Particle size/mm | 24 h water absorption(by mass)/% | Crushed value indicator(by mass)/% |
---|---|---|---|---|---|
1 270 | 1 340 | 2 570 | 5-25 | 2.5 | 15 |
Loose bulk density/ (kg· | Compact bulk density/ (kg· | Apparent density/ (kg· | Crushed value indicator(by mass)/% | Stone powder content(by mass)/% |
---|---|---|---|---|
1 470 | 1 690 | 2 610 | 23 | 3.9 |
火山石混凝土配合比如
Strength grade | Cement | Volcanic ash | Water | Machine‑made sand | Volcanic rock | Admixture |
---|---|---|---|---|---|---|
C20 | 231.0 | 77.0 | 185.0 | 831.0 | 976.0 | 4.3 |
C30 | 286.0 | 50.0 | 185.0 | 818.0 | 961.0 | 4.7 |
C40 | 350.0 | 61.0 | 185.0 | 784.0 | 920.0 | 6.2 |
C50 | 394.0 | 69.0 | 185.0 | 710.0 | 942.0 | 7.4 |
C60 | 529.0 | 0 | 185.0 | 666.0 | 920.0 | 7.4 |
冲击波速测试采用四川升拓检测技术股份有限公司的STL‑CMT冲击波测试仪,测试误差低于2

图2 冲击波速测试测点分布
Fig.2 Distribution of measuring points(size:mm)
为验证测强曲线的精度,另成型尺寸为550 mm×150 mm×450 mm、强度等级为C20~C60的长方体小型构件,成型1 d脱模后洒水养护至7 d,同样放在不受日晒雨淋的地方,自然养护到60 d,按同样的方法测试冲击波速、超声波速及回弹值;再根据JGJ/T 384—2016《钻芯法检测混凝土强度技术规程》的要求钻芯并加工成直径100 mm、高100 mm的芯样,进行必要的磨平或补平后测试芯样的抗压强度.
采用T/CECS 02—2020规程中所列的平均相对误差()及相对标准差()作为评价测强曲线精度的依据,计算方法分别如式(
(1) |
(2) |
式中:n为试块数量;为第个试块的强度推定值;为第个试块的实际抗压强度.
基于本文采集到的火山石混凝土的实测抗压强度、回弹值、碳化深度和超声波速数据,依据JGJ/T 23—2011《回弹法检测混凝土抗压强度技术规程》、T/CECS 02—2020规程和云南地方标准DBJ 53/T‑52—2021《回弹法检测混凝土抗压强度技术规程》、DBJ 53/T‑53—2021《超声回弹综合法检测混凝土抗压强度技术规程》推荐的测强曲线计算出推定强度,再根据式(
Method | Standard code | Recommended regression curve | /% | /% |
---|---|---|---|---|
Rebound | JGJ/T 23—2011 | 11.4 | 15.0 | |
DBJ 53/T‑52—2021 | 11.0 | 14.2 | ||
Ultrasonic rebound | T/CECS 02—2020 | 24.6 | 26.7 | |
DBJ 53/T‑53—2021 | 17.4 | 19.6 |
由
对试验数据用Nair法检

图3 冲击波速箱形图
Fig.3 Box diagram of impact elastic wave velocity
Parameter | C20 | C30 | C40 | C50 | C60 |
---|---|---|---|---|---|
Total number of samples | 175 | 177 | 179 | 178 | 178 |
Average value/(km· | 3.334 | 3.398 | 3.447 | 3.482 | 3.510 |
1‑quantile/(km· | 3.296 | 3.368 | 3.411 | 3.444 | 3.473 |
Median/(km· | 3.330 | 3.400 | 3.442 | 3.480 | 3.502 |
3‑quantile/(km· | 3.369 | 3.430 | 3.474 | 3.512 | 3.538 |
Standard deviation | 0.052 | 0.041 | 0.041 | 0.048 | 0.048 |
针对不同龄期、不同强度等级的混凝土试块,测试其冲击波速、回弹值和抗压强度,参考T/CECS 02—2020规程选择线性函数、二次函数及幂函数这3种数学模型,对冲击波速与抗压强度采用最小二乘法进行回归分析,得到冲击波法抗压强度回归方程,并用平均相对误差和相对标准差作为指标来衡量测强曲线评价火山石混凝土的精度,计算结果见
Function | a | b | c | /% | /% |
---|---|---|---|---|---|
-106.856 | 46.900 | 12.6 | 18.4 | ||
-3 539.399 | 2 025.031 | -284.786 | 10.3 | 14.8 | |
1.047 | 3.187 | 13.0 | 18.6 |
由
(3) |

图4 冲击波法检测火山石混凝土测强曲线
Fig.4 Strength curve of volcanic rock concrete by impact elastic wave method
残差为实测值与测强曲线推定值之差.冲击波法测强曲线残差相对于实测抗压强度的偏差分布如

图5 冲击波法偏差分析
Fig.5 Deviation analysis of impact elastic wave method
为进一步提高冲击波法评价火山石混凝土抗压强度的精度,将冲击波法与回弹法两种无损检测方法相结合,建立了一种新的无损检测方法:冲击波-回弹综合法.通过最小二乘法,选用线性函数模型和幂函数模型拟合得到冲击波-回弹综合法测强曲线,如
Function | a | b | c | /% | /% |
---|---|---|---|---|---|
-89.822 | 22.307 | 1.519 | 9.3 | 11.6 | |
0.060 | 1.508 | 1.303 | 9.3 | 11.3 |
由
(4) |
结合表

图6 冲击波-回弹综合法偏差分析
Fig.6 Deviation analysis of impact elastic wave rebound comprehensive method
制备了小型构件并采用钻芯方法来验证
Number | Impact elastic wave velocity/(km· | Rebound value | Actual compressive strength/MPa | Presumptive strength/MPa | Residual error/MPa | Relative residual error/% |
---|---|---|---|---|---|---|
1 | 3.287 | 33.6 | 32.4 | 35.0 | -2.6 | -8.0 |
2 | 3.293 | 35.9 | 34.4 | 38.2 | -3.8 | -11.0 |
3 | 3.229 | 34.0 | 34.8 | 34.6 | 0.2 | 0.7 |
4 | 3.334 | 38.6 | 39.7 | 42.8 | -3.1 | -7.9 |
5 | 3.293 | 40.0 | 40.0 | 44.0 | -4.0 | -10.0 |
6 | 3.330 | 40.6 | 43.2 | 45.6 | -2.4 | -5.7 |
7 | 3.351 | 38.1 | 46.0 | 42.4 | 3.6 | 7.8 |
8 | 3.328 | 45.6 | 47.9 | 53.1 | -5.2 | -10.8 |
9 | 3.437 | 43.5 | 54.6 | 52.3 | 2.3 | 4.1 |
10 | 3.399 | 42.6 | 55.0 | 50.1 | 4.9 | 8.9 |
11 | 3.474 | 46.0 | 58.0 | 57.2 | 0.8 | 1.4 |
12 | 3.528 | 51.9 | 64.4 | 68.5 | -4.1 | -6.4 |
13 | 3.537 | 48.0 | 67.8 | 62.1 | 5.7 | 8.4 |
14 | 3.543 | 50.0 | 69.1 | 65.7 | 3.4 | 4.9 |
15 | 3.502 | 54.5 | 71.3 | 72.2 | -0.9 | -1.3 |
(1)采用现行标准中推荐的超声回弹综合法检测火山石混凝土抗压强度时,平均相对误差和相对标准差均超出规范限值,不能用于火山石混凝土的无损检测;现行的地方标准推荐的回弹法测强曲线可用于火山石混凝土,但平均相对误差和相对标准差达到11.0%和14.2%,检测精度不高.
(2)冲击波速与火山石混凝土抗压强度具有良好的相关性,建立的冲击波测强曲线平均相对误差和相对标准差分别为10.3%和14.8%,可用于检测火山石混凝土抗压强度.
(3)建立了冲击波-回弹综合法测强曲线公式,所推定抗压强度的平均相对误差和相对标准差分别为9.3%和11.3%,经实体小型构件钻芯验证,该测强曲线相对残差在±11%以内,残差在±6 MPa以内,因此冲击波-回弹综合法能够更准确地推定火山石混凝土的抗压强度.
参考文献
赵祺,桑源,高金麟,等.冲击回波法评价混凝土质量研究综述[J].混凝土与水泥制品,2019(12):18‑23. [百度学术]
ZHAO Qi, SANG Yuan, GAO Jinlin, et al. Summary of the research on impact‑echo method to evaluate the quality of concrete[J]. China Concrete and Cement Products, 2019(12):18‑23.(in Chinese) [百度学术]
魏亚,万成,左勇志,等.红外热像法与超声回弹法检测受火混凝土损伤[J].建筑材料学报,2018,21(1):131‑137. [百度学术]
WEI Ya, WAN Cheng, ZUO Yongzhi, et al. Infrared thermal image method and ultrasonic rebound method in assesing fire‑damaged concrete[J].Journal of Building Materials, 2018,21(1):131‑137. (in Chinese) [百度学术]
党玉栋,马晓杰,董晨辉,等.混凝土材料物理性能的空间非均匀性表现[J].建筑材料学报,2019,22(2):260‑265. [百度学术]
DANG Yudong, MA Xiaojie, DONG Chenhui, et al. Characterization of spatial non‑uniformity of physical properties for concrete materials[J].Journal of Building Materials, 2019,22(2):260‑265. (in Chinese) [百度学术]
刘倩,刘京红,刘婷,等.超声回弹综合法检测再生砖骨料混凝土强度[J].混凝土,2019(11):174‑177. [百度学术]
LIU Qian, LIU Jinghong, LIU Ting, et al. Ultrasonic rebound method for detecting the strength curve of recycled brick aggregate concrete[J]. Concrete,2019(11):174‑177. (in Chinese) [百度学术]
杨文慧,李晓丽.超声回弹综合法在混合骨料混凝土中应用试验研究[J].硅酸盐通报,2013,32(6):1119‑1125. [百度学术]
YANG Wenhui, LI Xiaoli. Experimental study on the application of ultrasonic‑rebound combined method in specified density concrete[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(6):1119‑1125. (in Chinese) [百度学术]
王志田.冲击弹性波检测结构混凝土强度研究[J].城市住宅,2020,27(3):201‑202. [百度学术]
WANG Zhitian. Study on testing structural concrete strength by impact elastic wave[J]. Urban Residence,2020,27(3):201‑202. (in Chinese) [百度学术]
姜勇,吴佳晔,马永强,等.基于冲击弹性波的隧道衬砌混凝土强度检测技术研究和应用[J].铁道建筑,2020,60(6):1‑5,11. [百度学术]
JIANG Yong, WU Jiaye, MA Yongqiang, et al. Research and application of detection technology of tunnel lining concrete strength based on impact elastic wave[J]. Railway Engineering, 2020, 60(6):1‑5,11. (in Chinese) [百度学术]
田北平,吴佳晔,赵强,等.引水隧洞衬砌质量检测的冲击弹性波无损检测技术[J].四川建筑科学研究,2010,36(4):102‑104. [百度学术]
TIAN Beiping, WU Jiaye, ZHAO Qiang, et al. The impact elastic wave in the diversion tunnel lining quality examination non‑destructive testing technology[J].Sichuan Building Science, 2010, 36(4):102‑104. (in Chinese) [百度学术]
魏连雨,王金伟,刘永平,等.桥梁注浆孔道中冲击弹性波波速特征检验研究[J].重庆交通大学学报(自然科学版),2017,36(1):14‑18. (in Chinese) [百度学术]
WEI Lianyu, WANG Jinwei, LIU Yongping, et al. Tests on the features of elastic wave velocity in bridge grouting tunnel[J]. Journal of Chongqing Jiaotong University(Natural Science), 2017, 36(1):14‑18. (in Chinese) [百度学术]
董玉文,陆木秀,郑磊,等.冻融循环作用下混凝土的冲击波传播特性[J].建筑材料学报,2019,22(6):928‑932. [百度学术]
DONG Yuwen, LU Muxiu, ZHENG Lei, et al. Characteristics of impact elastic wave propagation in concrete after freeze‑thaw cycle[J].Journal of Building Materials, 2019,22(6):928‑932. (in Chinese) [百度学术]
靳壮壮. 旱区桥梁混凝土测强曲线的试验及应用研究[D].兰州:兰州交通大学,2022. [百度学术]
JIN Zhuangzhuang. Experiment and application research on concrete strength curve of bridge in arid area[D]. Lanzhou:Lanzhou Jiaotong University,2022.(in Chinese) [百度学术]
李炎隆,王军忠,陈俊豪,等.冲击回波法对混凝土内部损伤检测的试验研究[J].应用力学学报,2020,37(1):149‑154,478. [百度学术]
LI Yanlong, WANG Junzhong, CHEN Junhao, et al. Experimental study on the detection of internal damage of concrete by impact‑echo method[J]. Chinese Journal of Applied Mechanices, 2020, 37(1):149‑154,478. (in Chinese) [百度学术]
丁勇楠,李曙光,田军涛,等.冲击回波法定量评估低强和高强混凝土荷载损伤[J].水力发电,2019,45(3):120‑124. [百度学术]
DING Yongnan, LI Shuguang, TIAN Juntao, et al. Quantitative evaluation of stress‑induced damage in low‑strength and high‑strength concrete by impact‑echo method[J]. Water Power, 2019, 45(3):120‑124. (in Chinese) [百度学术]
JAGANATHAN A P. Multichannel surface wave analysis of reinforced concrete pipe segments using longitudinal and circumferential waves induced by a point impact[J]. Journal of Applied Geophysics, 2019, 163:40‑54. [百度学术]
乔宏霞,路承功,焦晓光,等.兰州地区泵送混凝土测强曲线及无损检测方法适用性研究[J].混凝土与水泥制品,2017(12):74‑78. [百度学术]
QIAO Hongxia, LU Chenggong, JIAO Xiaoguang, et al. Study on applicability of strength curve of pumping concrete and nondestructive testing method in Lanzhou area[J].China Concrete and Cement Products,2017(12):74‑78. (in Chinese) [百度学术]
王萧萧,赵恒,谭鑫磊,等.天然浮石混凝土力学性能与微观结构研究[J].混凝土,2019(2):61‑64. [百度学术]
WANG Xiaoxiao, ZHAO Heng, TAN Xinlei, et al. Study on mechanical properties and microstructure of natural pumice concrete[J]. Concrete, 2019(2):61‑64. (in Chinese) [百度学术]