摘要
为评价双螺杆活化胶粉复合SBS改性沥青及其混合料的低温性能,用测力延度、半圆弯曲和裂缝扩展性能试验分别测试了SBS改性沥青、未活化胶粉复合SBS改性沥青和双螺杆活化胶粉复合SBS改性沥青的低温性能指标,并采用熵权法对测力延度指标进行优选,通过荧光显微镜和四组分试验对3种沥青的性能变化进行机理分析.结果表明:测力延度指标中最大屈服点可有效表征双螺杆活化胶粉复合SBS改性沥青的低温性能;双螺杆活化过程中交联键被打开,并与SBS形成稳定的交联网络结构,显著提高了改性沥青混合料的高温性能和抗水损害性能.
回收胶粉因其内部复杂的网络交联结构使之与沥青不易相
本文用测力延度、半圆弯曲(SCB)和裂缝扩展性能试验评价了SBS改性沥青(SBS‑MA)、未活化胶粉复合SBS改性沥青(CR/SBS‑MA)和双螺杆活化胶粉复合SBS改性沥青(ACR/SBS‑MA)的低温性能指标,为双螺杆活化胶粉复合SBS改性沥青的推广应用提供理论与技术支撑.
采用甘肃省交通规划勘察设计院股份有限公司提供的镇海90#基质沥青、420 μm(40目)胶粉和1301线性SBS改性剂、糠醛抽出油和稳定剂分别制备SBS‑MA、CR/SBS‑MA和ACR/SBS‑MA.改性沥青及活化胶粉的制备过程参考文献[
Index | SBS‑MA | CR/SBS‑MA | ACR/SBS‑MA | |
---|---|---|---|---|
SBS dosage(by mass)/% | 4.5 | 3.0 | 3.0 | |
Rubber powder dosage(by mass)/% | 0 | 15 | 15 | |
Penetration (25 ℃,100 g, 5 s)/(0.1 mm) | 70 | 68 | 73 | |
Penetration index | 0.21 | 3.30 | 2.20 | |
Ductility (5 ℃, 5 cm·mi | 36 | 21 | 39 | |
Softening point/℃ | 87 | 63 | 91 | |
Residue after rotating film heating | Mass loss/% | -0.08 | 0.10 | -0.30 |
Penetration ratio | 0.80 | 0.83 | 0.84 | |
Ductility (5 ℃,5 cm·mi | 26 | 14 | 27 |
采用SMA‑10成型沥青混合料,其级配见
Index | Sieve size/mm | ||||||||
---|---|---|---|---|---|---|---|---|---|
13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | |
Upper limit | 100.0 | 100.0 | 60.0 | 32.0 | 26.0 | 22.0 | 18.0 | 16.0 | 13.0 |
Lower limit | 100.0 | 90.0 | 28.0 | 20.0 | 14.0 | 12.0 | 10.0 | 9.0 | 8.0 |
Median limit | 100.0 | 95.0 | 44.0 | 26.0 | 20.0 | 17.0 | 14.0 | 12.5 | 10.5 |
Selected gradation | 100.0 | 95.9 | 28.1 | 24.5 | 20.3 | 16.9 | 14.0 | 11.9 | 10.9 |
采用澳大利亚IPC global公司生产的81‑PV10B0研究型延度仪,按照JTG E20—2011《公路工程沥青及沥青混合料试验规程》浇筑延度试件,拉伸速率为50 mm/min,水浴温度为5 ℃.
采用AMPT设备引进LLD控制模式进行加载,利用LVDT位移传感器对试件底部的位移进行监测,得到加载过程中试件底部位移的变化规律.根据文献[
根据JTG E20—2011对改性沥青混合料的水稳定性和高温稳定性进行测试,结果见
Index | SBS‑MA | CR/SBS‑MA | ACR/SBS‑MA |
---|---|---|---|
MS0/% | 89.36 | 89.45 | 104.15 |
TSR/% | 89.23 | 83.40 | 92.89 |
DS/(times·m | 4 800 | 4 500 | 9 000 |
测力延度试验结果见

图1 测力延度试验结果
Fig.1 Results of force‑measuring ductility test
为进一步量化分析,分别计算各项测力延度指标,结果见
Index | SBS‑MA | CR/SBS‑MA | ACR/SBS‑MA |
---|---|---|---|
Fmax/N | 73.04 | 47.95 | 49.74 |
Wf/J | 13.14 | 8.66 | 16.33 |
Lmax/mm | 7.13 | 11.67 | 7.48 |
Viscoelastic area/(N·mm) | 0.407 | 0.466 | 0.294 |
Ductile area/(N·mm) | 12.733 | 8.194 | 16.036 |
Stretch compliance/(N·m | 10.24 | 4.11 | 6.65 |
Yield strain energy/J | 521 | 560 | 372 |
Toughness ratio/% | 31.29 | 17.58 | 54.54 |
前文采用多指标方式综合评判了改性沥青的低温性能,但对于多指标的离散程度尚不清晰,为此,本节采用熵权法的熵值来判断指标的离散程度.熵值越小,指标的离散程度越大,该指标对综合评价的权重就越大.具体步骤如下:
按式(
(1) |
(2) |
式中:、分别为第i个样本、第j个指标标准化前、后的值;,…,为第1,…,n个样本第j个指标的值;n为样本数量.
S的计算式为:
(6) |
测力延度熵权法评价结果见
Index | S/% | ||
---|---|---|---|
Wf | 0.599 | 0.401 | 11.233 |
Lmax | 0.235 | 0.765 | 21.449 |
Toughness ratio | 0.531 | 0.469 | 13.134 |
Yield strain energy | 0.625 | 0.375 | 10.516 |
Viscoelastic area | 0.614 | 0.386 | 10.821 |
Ductile area | 0.598 | 0.402 | 11.262 |
Fmax | 0.630 | 0.370 | 10.362 |
Stretch compliance | 0.600 | 0.400 | 11.224 |
为进一步验证Lmax的测试结果,采用半圆弯曲试验对ACR/SBS‑MA、SBS‑MA和CR/SBS‑MA混合料的低温性能进行评价,结果见

图2 半圆弯曲试验结果
Fig.2 Results of SCB test
为进一步定量描述3种改性沥青混合料的低温抗裂性能,由半圆弯曲试验计算其断裂功Wf、韧性区面积Alig、断裂能Gf、柔性指数FI和斜率k,结果见
Index | SBS‑MA | CR/SBS‑MA | ACR/SBS‑MA |
---|---|---|---|
Wf/J | 3.97 | 7.27 | 3.39 |
Alig/ | 0.001 45 | 0.001 44 | 0.001 48 |
Gf/(J· | 2 732 | 5 047 | 2 290 |
k | 1.739 | 2.313 | 1.717 |
FI | 15.71 | 21.82 | 13.33 |
Gu

图3 裂缝扩展性能试验结果
Fig.3 Results of overlay test
由裂缝扩展性能试验计算了改性沥青混合料的临界断裂能Gc、Wf和Alig,结果见
Index | SBS‑MA | CR/SBS‑MA | ACR/SBS‑MA |
---|---|---|---|
Gc/(J· | 84 000 | 121 000 | 86 000 |
Alig/ | 0.281 00 | 0.281 00 | 0.281 00 |
Wf/J | 236.25 | 340.31 | 241.88 |
采用荧光显微镜观察了CR/SBS‑MA、SBS‑MA和ACR/SBS‑MA的微观结构,结果见

图4 荧光显微镜结果
Fig.4 Results of fluorescence microscope
郝培文

图5 四组分试验结果
Fig.5 Results of four components test
(1)双螺杆活化过程中打开了胶粉的部分交联键,使其与SBS在基质沥青中形成稳定的交联网络结构,从而使双螺杆活化胶粉复合SBS改性沥青混合料具有非常突出的高温和较突出的水稳定性能.
(2)未活化胶粉和SBS更多地吸附沥青中的饱和分和芳香分,并进行充分的物理溶胀,进而分散在沥青的连续相中,使未活化胶粉复合SBS改性沥青混合料具有较为突出的低温性能.
(3)测力延度指标中最大屈服应变可有效表征改性沥青的低温抗裂性能,且与半圆弯曲试验计算的断裂功和裂缝扩展性能试验计算的临界断裂能的相关系数均在0.99以上.
(4)本文仅仅针对同一活化度的活化胶粉复合SBS改性沥青与未活化胶粉复合SBS改性沥青、SBS改性沥青对比分析,后期将进一步研究不同活化度胶粉对其复合改性沥青低温性能的影响规律.
参考文献
马涛, 陈葱琳, 张阳, 等.胶粉应用于沥青改性技术的发展综述[J]. 中国公路学报, 2021, 34(10):1‑16. [百度学术]
MA Tao, CHEN Conglin, ZHANG Yang, et al. Overview of the development of rubber powder application in asphalt modification technology[J]. Journal of China Highway and Transport, 2021,34 (10):1‑16.(in Chinese) [百度学术]
叶奋, 杨思远, 吴晓羽, 等.深度降解橡胶改性沥青的流变性能[J]. 建筑材料学报, 2016, 19(5):945‑949. [百度学术]
YE Fen, YANG Siyuan, WU Xiaoyu, et al. Rheological properties of deeply degraded rubber modified asphalt[J]. Journal of Building Materials, 2016, 19 (5):945‑949.(in Chinese) [百度学术]
杨永强, 康秉铎, 郭海东, 等.活化胶粉/SBS复合改性沥青短期老化性能[J]. 长安大学学报(自然科学版), 2021, 41(5):23‑33. [百度学术]
YANG Yongqiang, KANG Bingduo, GUO Haidong, et al. Short term aging performance of activated rubber powder/SBS composite modified asphalt[J]. Journal of Chang’an University (Natural Science), 2021,41(5):23‑33.(in Chinese) [百度学术]
SHI F X, LI X L, BAI Y N, et al. Mechanism of the zinc dithiocarbamate‑activated rubber vulcanization process:A density functional theory study[J]. ACS Applied Polymer Materials, 2021, 3(10):5188‑5196. [百度学术]
李波, 魏永政, 王宇, 等. 过氧化氢处理胶粉对橡胶-沥青黏弹性的影响[J].复合材料学报, 2019, 36(4):1008‑1016. [百度学术]
LI Bo, WEI Yongzheng, WANG Yu, et al. Effect of hydrogen peroxide treated rubber powder on viscoelasticity of rubber asphalt[J]. Journal of Composite Materials, 2019, 36(4):1008‑1016.(in Chinese) [百度学术]
曾冬, 徐向荣, 吴俊青, 等.双螺杆挤出改性胶粉/天然橡胶并用胶的性能研究[J]. 橡胶工业, 2020, 67(11):839‑842. [百度学术]
ZENG Dong, XU Xiangrong, WU Junqing, et al. Study on properties of modified rubber powder/natural rubber blends by twin‑screw extrusion[J]. Rubber Industry, 2020, 67 (11):839‑842.(in Chinese) [百度学术]
SI H, CHEN T J, ZHANG Y C. Effects of high shear stress on the devulcanization of ground tire rubber in a twin‐screw extruder[J]. Journal of Applied Polymer Science, 2013, 128(4):2307‑2318. [百度学术]
YAZDANI H, KARRABI M, GHASMI I, et al. Devulcanization of waste tires using a twin‑screw extruder:The effects of processing conditions[J]. Journal of Vinyl and Additive Technology, 2011, 17(1):64‑69. [百度学术]
CUI H J, LI L H, LIU D. Research on low‑temperature anti‑crack performance of high modulus asphalt mixture[J]. Journal of Highway and Transportation Research and Development, 2014, 31(2):37‑20. [百度学术]
RADEEF H R, HASSAN N A, ABIDIN A, et al. Impact of ageing and moisture damage on the fracture properties of plastic waste modified asphalt[J]. IOP Conference Series:Earth and Environmental Science, 2022, 971(1):012009. [百度学术]
文卫军. TSEP活化废旧轮胎胶粉复配SBS改性沥青的制备与性能研究[D].兰州:兰州交通大学, 2023. [百度学术]
WEN Weijun. Preparation and performance study of TSEP activated waste tire rubber powder composite SBS modified asphalt[D]. Lanzhou:Lanzhou Jiaotong University, 2023. (in Chinese) [百度学术]
冯德成, 崔世彤, 易军艳, 等. 基于SCB试验的沥青混合料低温性能评价指标研究[J].中国公路学报, 2020, 33(7):50‑57. [百度学术]
FENG Decheng, Cui Shitong, Yi Junyan, et al. Evaluation index of low‑temperature asphalt mixture performance based on semi‑circular bending test [J]. China Journal Highway and Transport, 2020, 33(7):50‑57. (in Chinese) [百度学术]
郝培文, 李万军, 韩钰祥, 等. 基于OT试验的乳化沥青冷再生面层混合料抗反射裂缝性能研究[J].材料导报, 2021, 35(增刊2):150‑157. [百度学术]
HAO Peiwen, LI Wanjun, HAN Yuxiang, et al. Crack resistance of cold recycled mixture with emulsified asphalt for surface course based on OT test[J]. Materials Reports, 2021, 35(Suppl 2):150‑157.(in Chinese) [百度学术]
SAED S A, KARIMI H R, RAD S M, et al. Full range I/II fracture behavior of asphalt mixtures containing RAP and rejuvenating agent using two different 3‑point bend type configurations[J]. Construction and Building Materials, 2022, 314:125590. [百度学术]
GU F, LUO X, ZHANG Y Q, et al. Using overlay test to evaluate fracture properties of field‑aged asphalt concrete[J]. Construction and Building Materials, 2015, 101:1059‑1068. [百度学术]
郝培文, 丁丰利, 刘策. 沥青四组分对沥青与集料黏附-黏聚性的影响[J].中国科技论文, 2022, 17(12):1396‑1401. [百度学术]
HAO Peiwen, DING Fengli, LIU Ce. Effect of four components of asphalt on adhesion and cohesion between asphalt and aggregate[J]. Chinese Science and Technology Paper, 2022, 17(12):1396‑1401.(in Chinese) [百度学术]
李添帅, 陆国阳, 梁栋, 等.聚氨酯前驱体基化学改性沥青及其改性机理[J].中国公路学报, 2021, 34(10):45‑59. [百度学术]
LI Tianshuai, LU Guoyang, LIANG Dong, et al. Polyurethane precursor‑based chemically modified asphalt and its modification mechanism [J].Chinese Journal of Highway Engineering, 2021,34 (10):45‑59.(in Chinese) [百度学术]
王勤芳, 曾海, 田奕, 等. 浅谈基质沥青四组分组成对SBS改性沥青高低温性能影响[J].石油沥青, 2019, 33(6):7‑13. [百度学术]
WANG Qinfang, ZENG Hai, TIAN Yi, et al. Effects of four component composition of matrix asphalt on the high and low temperature performance of SBS modified asphalt[J]. Petroleum Asphalt, 2019, 33 (6):7‑13.(in Chinese) [百度学术]