摘要
沸石作为制备泡沫沥青温拌混合料的发泡剂,其释放的沸石水和残留的沸石矿物对沥青-填料交互作用有着不同影响.通过流变学试验,研究了沸石、沸石矿物和沸石水对SBS改性沥青及其胶浆流变特性的影响.试验发现,在沥青或胶浆中添加沸石或沸石矿物可使其弹性增大,且随其掺量的增加而增大,沸石水则与之相反.进一步,利用基于流变特性的交互作用评价指标[η]、Palierne‑C‑
沥青混合料是由沥青与填料(集料+矿粉)组成的多相复合材
在全球变暖和能源短缺的发展背景下,作为一种新兴的绿色筑路技术,沸石发泡沥青温拌混合料因具有显著的经济和环境效益,在铺面工程中有着广阔的应用前
为研究Aspha‑min沸石对SBS改性沥青-填料交互作用的影响,本文通过流变学试验研究了沸石、沸石矿物和沸石水对SBS改性沥青及其胶浆流变特性的影响.进一步,利用基于流变特性的交互作用评价指标,研究了沸石、沸石矿物和沸石水对SBS改性沥青-填料交互作用的影响.本研究可揭示沸石发泡剂对沥青材料性能的作用机理,对其在沥青混合料中的应用具有指导意义.
沥青选用平湖市恒达改性沥青有限公司生产的Ⅰ‑D 型SBS改性沥青,其主要技术指标见
Index | Test value | Specification | Method |
---|---|---|---|
Penetration (25 ℃,100 g,5 s)/( 0.1mm) | 55 | 40-60 | JTG E20—2011 T 0604 |
Ductility (5 ℃)/ cm | 28 | ≥20 | JTG E20—2011 T 0605 |
Softening point/℃ | 72 | ≥60 | JTG E20—2011 T 0606 |
Density (25 ℃)/( g·c | 1.03 | JTG E20—2011 T 0603 |
试验选用SBS改性沥青和Aspha‑min沸石,考虑沸石矿物和沸石共2种沸石含水状态,设计1%、3%、5%、7%和9%共5个沸石掺量(以沥青质量计),沸石矿物掺量=沸石掺量×(1-沸石失水率),制备沸石矿物改性沥青(沥青+沸石矿物)和沸石发泡改性沥青(沥青+沸石).先用发泡容器称取沥青,然后移至电热套内加热控温.待控温至试验温度170 ℃后,按设计掺量称取相应质量的沸石/沸石矿物添加到沥青中,随即开启搅拌器以200 r/min搅拌10 min.
进一步,选用石灰岩矿粉作填料,为避免颗粒结构化,在填料临界体积分数40%范围
试样制备及测试分析流程图如

图1 试样制备及测试分析流程图
Fig.1 Flow chart of sample preparation and testing analysis
采用布氏黏度计测定试样在170 ℃下的黏度(η).测试选用27#转子,设定转速为50.0 r/min.
在TA牌AR 1500EX型动态剪切流变仪(DSR)上对试样进行温度扫描试验,测定其在58、64、70、76、82 ℃的复数模量(
根据前述介绍,本文选用交互作用评价指标[η]、Palierne‑C‑
[η]用于描述固体颗粒与液体交互作用的强弱,其数值大小与固体颗粒的浓度无关.对于填料体积分数不大的沥青胶浆,填料颗粒充分分散且以单粒形式被包裹于沥青中,界面无滑动,类似于悬浮体系.当用[η]来评价沥青-填料交互作用时,可采用Einstein模型进行计算,见式(
(1) |
(2) |
式中:为胶浆黏度,Pa·s;为沥青黏度,Pa·s;为填料体积分数,%;、和分别为填料、沸石/沸石矿物和沥青的质量,g;、和分别为填料、沸石/沸石矿物和沥青的密度,g/c
沥青与填料的交互作用评价指标Palierne‑C‑
(3) |
式中:为胶浆复数模量,Pa;为沥青复数模量,Pa.
Luis Ibrarra‑A‑δ 模型起初用于评价复合材料的界面能量损耗.对于颗粒填充复合材料,除了基体相和填充相外,界面相的分子运动同样也对复合材料的力学损耗有贡献.因此,可通过评估界面的力学损耗来定量地评价复合材料中基体相和填充相的交互作用能力.
对于由沥青和填料组成的复合材料,沥青-填料交互作用会形成界面相.依据三相模型,沥青胶浆的损耗因子可采用下式计算:
(4) |
式中:为胶浆相位角,(°);为填料相位角,(°);为界面相位角,(°);为沥青相位角,(°);为界面体积分数,%;为沥青体积分数,%.
由于填料为刚性颗粒,可假定,并且界面区域的体积分数很小,因此
(5) |
参数A表示沥青-填料交互作用的强弱,A值越小,则沥青-填料交互作用越
(6) |
通过旋转黏度试验和温度扫描试验,测定了沸石矿物改性沥青及其胶浆和沸石发泡改性沥青及其胶浆的流变特性(η、
沸石发泡改性沥青及其胶浆的流变特性与沸石掺量的关系如

图2 沸石发泡改性沥青材料流变特性与沸石掺量的关系
Fig.2 Relationship between rheological properties of zeolite foamed modified asphalt materials and zeolite dosage
由
由
沸石矿物改性沥青及其胶浆的流变特性与沸石矿物掺量的关系如

图3 沸石矿物改性沥青材料流变特性与沸石矿物掺量的关系
Fig.3 Relationship between rheological properties of zeolite mineral modified asphalt materials and zeolite mineral dosage
由
基于沸石矿物改性沥青及其胶浆和沸石发泡改性沥青及其胶浆的流变试验结果,利用交互作用参数[η]、Palierne‑C‑
沸石发泡改性沥青-填料交互作用参数与沸石掺量的关系如

图4 沸石发泡改性沥青-填料交互作用参数与沸石掺量的关系
Fig.4 Relationship between zeolite foamed modified asphalt‑filler interaction parameters and zeolite dosage
由
由
沸石矿物改性沥青-填料交互作用参数与沸石矿物掺量的关系如

图5 沸石矿物改性沥青-填料交互作用参数与沸石矿物掺量的关系
Fig.5 Relationship between zeolite mineral modified asphalt‑filler interaction parameters and zeolite mineral dosage
由
由
(1)在SBS改性沥青及其胶浆中添加沸石或沸石矿物均会使其弹性增大,且随着两者掺量的增加其弹性增大.但在同一掺量下,添加沸石矿物的沥青或胶浆的弹性大于添加沸石的,说明沸石发泡沥青及其胶浆中的沸石水使其弹性降低.
(2)在SBS改性沥青胶浆中添加沸石或沸石矿物均会使沥青-填料交互作用增大,且随着两者掺量的增加而增大.但在同一掺量下,添加沸石矿物的沥青-填料交互作用大于添加沸石的,说明沸石水对沸石发泡沥青-填料交互作用有削弱效果.
(3)添加沸石或沸石矿物的SBS改性沥青胶浆中沥青-填料交互作用均随着试验温度的升高而增大,说明温度的升高对沸石发泡沥青-填料交互作用有促进效果.
参考文献
任敏达, 冯汉卿, 丛林, 等. 沥青混合料饱水过程的强度演化规律及机理分析[J]. 建筑材料学报, 2022, 25(5):537‑544. [百度学术]
REN Minda, FENG Hanqing, CONG Lin, et al. Strength evolution law and mechanism analysis of asphalt mixtures during water saturation[J]. Journal of Building Materials, 2022, 25(5):537‑544.(in Chinese) [百度学术]
ALVAREZ A E, OVALLES E, CARO S. Assessment of the effect of mineral filler on asphalt‑aggregate interfaces based on thermodynamic properties[J]. Construction and Building Materials, 2012, 28(1):599‑606. [百度学术]
周璐, 黄卫东, 吕泉, 等. 不同改性剂对沥青黏结及抗水损害性能的影响[J]. 建筑材料学报, 2021, 24(2):377‑384. [百度学术]
ZHOU Lu, HUANG Weidong, LÜ Quan, et al. Effects of various modifiers on the bond property and moisture damage resisitance of asphalt[J]. Journal of Building Materials, 2021, 24(2):377‑384. (in Chinese) [百度学术]
付军, 熊定邦, 李忠杰, 等. 沥青混合料界面区微米划痕试验与参数分析[J]. 建筑材料学报, 2023, 26(1):78‑84. [百度学术]
FU Jun, XIONG Dingbang, LI Zhongjie, et al. Micro‑scratch test and parameter analysis of asphalt mixture interfacial transition zone[J]. Journal of Building Materials, 2023, 26(1):78‑84. (in Chinese) [百度学术]
豆莹莹, 魏定邦, 李晓民, 等. 沥青-集料界面黏附性衰减机理研究[J]. 建筑材料学报, 2019, 22(5):771‑779. [百度学术]
DOU Yingying, WEI Dingbang, LI Xiaomin, et al. Adhesion attenuation mechanism of asphalt‑aggregate interface[J]. Journal of Building Materials, 2019, 22(5):771‑779. (in Chinese) [百度学术]
SUKHIJA M, SABOO N. A comprehensive review of warm mix asphalt mixtures‑Laboratory to field[J]. Construction and Building Materials, 2021, 274:121781. [百度学术]
HESAMI E, BIRGISSON B, KRINGOS N. Numerical and experimental evaluation of the influence of the filler‑bitumen interface in mastics[J]. Materials and Structures, 2013, 47(8):1325‑1337. [百度学术]
李晓民, 豆莹莹, 徐慧宁, 等. 冻融循环作用下沥青胶浆交互能力及流变性能的研究[J]. 建筑材料学报, 2019, 22(5):831‑838. [百度学术]
LI Xiaomin, DOU Yingying, XU Huining, et al. Interaction abilility and rheological properties of asphalt mastic under freeze‑thaw cycles[J]. Materials and Structures, 2019, 22(5):831‑838. (in Chinese) [百度学术]
WU W J, JIANG W, YUAN D D, et al. A review of asphalt‑filler interaction:Mechanisms, evaluation methods, and influencing factors[J]. Construction and Building Materials, 2021, 299:124279. [百度学术]
TAN Y Q, LI X L, WU J T. Evaluation indices of interaction ability of asphalt and aggregate based on rheological characteristics[J]. Journal of Wuhan University of Technology(Materials Science), 2012, 27(5):979‑985. [百度学术]
TAN Y Q, GUO M. Interfacial thickness and interaction between asphalt and mineral fillers[J]. Materials and Structures, 2014, 47(4):605‑614. [百度学术]
ZHANG J P, LIU G Q, ZHU C Z, et al. Evaluation indices of asphalt‑filler interaction ability and the filler critical volume fraction based on the complex modulus[J]. Road Materials and Pavement Design, 2016, 18(6):1338‑1352. [百度学术]
LIU G Q, JIA Y S, PAN Y Y, et al. Quantitative comparison of evaluation indices for asphalt‑filler interaction ability within filler critical volume fraction[J]. Road Materials and Pavement Design, 2018, 21(4):906‑926. [百度学术]
HOU J P, MA X Y, CHEN H X, et al. A comparison of indices used to evaluate asphalt‑filler interactions[J]. Construction and Building Materials, 2022, 359:129501. [百度学术]
TAN Y Q, LI X L, ZHOU X Y. Interactions of granite and asphalt basedon the rheological characteristics[J]. Journal of Materials in Civil Engineering, 2010, 22(8):820‑825. [百度学术]
LIU G Q, YANG T, LI J, et al. Effects of aging on rheological properties of asphalt materials and asphalt‑filler interaction ability[J]. Construction and Building Materials, 2018, 168:501‑511. [百度学术]
CHEN M, JAVILLA B,HONG W, et al. Rheological and interaction analysis of asphalt binder, mastic and mortar[J]. Materials(Basel), 2019, 12(1). [百度学术]
BI Y Q, WEI R Y, LI R, et al. Evaluation of rheological master curves of asphalt mastics and asphalt‑filler interaction indices[J]. Construction and Building Materials, 2020, 265:120046. [百度学术]
XU W Y, QIU X, XIAO S L, et al. Characteristics and mechanisms of asphalt‑filler interactions from a multi‑scale perspective[J]. Materials(Basel), 2020, 13(12):2744. [百度学术]
LI F, ZHANG X, MENG S Y, et al. Experimental research of various evaluation indices on predicting the influences of internal and external factors on asphalt‑filler interaction ability[J]. Journal of Testing and Evaluation, 2023, 51(2)720‑734. [百度学术]
LI F, ZHAO X, ZHANG X. Utilizing original and activated coal gangue wastes as alternative mineral fillers in asphalt binder:Perspectives of rheological properties and asphalt‑filler interaction ability[J]. Construction and Building Materials, 2023, 365:130069. [百度学术]
XU W Y, QIU X, XIAO S L, et al. Molecular dynamic investigations on the adhesion behaviors of asphalt mastic‑aggregate interface [J]. Materials(Basel), 2020, 13(22):5061. [百度学术]
刘国强. 基于流变特性的沥青/填料交互作用评价与机理研究[D]. 西安:长安大学, 2016. [百度学术]
LIU Guoqiang. Mechanism research and evaluation of asphalt/filler interaction based on rheological properties[D]. Xi’an:Chang’an University, 2016.(in Chinese) [百度学术]
郭猛. 沥青与矿料界面作用机理及多尺度评价方法研究[D]. 哈尔滨:哈尔滨工业大学, 2015. [百度学术]
GUO Meng. Study on mechanism and multiscale evaluation method of interfacial interaction between asphalt binder and mineral aggregate[D]. Harbin:Harbin Institute of Technology, 2015.(in Chinese) [百度学术]
吴建涛. 基于流变特性的沥青与集料交互作用能力的研究[D]. 哈尔滨:哈尔滨工业大学, 2009. [百度学术]
WU Jiantao. Studies on interaction capability of asphalt and aggregate based on rheological characteristics[D]. Harbin:Harbin Institute of Technology, 2009.(in Chinese) [百度学术]
LIU G Q, ZHAO Y L, ZHOU J, et al. Applicability of evaluation indices for asphalt and filler interaction ability[J]. Construction and Building Materials, 2017, 148:599‑609. [百度学术]