摘要
鉴于橡胶砂作为回填材料时承载力低和变形量大的问题,采用加入聚丙烯纤维(PPF)的方法提高橡胶砂的力学性能,提出了聚丙烯纤维增强橡胶砂的半干拌式制备方法,通过48组聚丙烯纤维增强橡胶砂、普通橡胶砂和纯砂试样的固结不排水剪切试验,探究了聚丙烯纤维掺量和橡胶掺量等参数对聚丙烯纤维增强橡胶砂主要力学变形特征参数的影响.结果表明:聚丙烯纤维对橡胶砂弹性模量的影响较小;聚丙烯纤维增强橡胶砂具有先剪缩后剪胀破坏的特征,其偏应力与轴向应变关系为应变硬化型;聚丙烯纤维可有效提高橡胶砂的内摩擦角和黏聚力;聚丙烯纤维增强橡胶砂破坏偏应力的提升效果十分显著,最高可提高3倍.
关键词
为促进废旧轮胎的回收再利用,将其粉碎成橡胶颗粒,并与砂土混合制成橡胶砂,可应用于土木工程领域中.Edil
为提高橡胶砂的力学性能,本文采用聚丙烯纤维(PPF)随机分布的加筋技术对散粒橡胶砂进行加固.采用半干拌式法制备了聚丙烯纤维增强橡胶砂,并基于固结不排水剪切试验,分析了橡胶掺量wR(质量分数,文中涉及的掺量等除特殊说明外均为质量分数)、聚丙烯纤维掺量wF及有效围压σ3对聚丙烯纤维增强橡胶砂主要力学变形特征参数的影响,揭示了聚丙烯纤维对橡胶砂力学特征的影响规律.
采用福建ISO标准砂,根据GB/T 50123—2019《土工试验方法标准》,采用筛析法对其进行颗粒分析,得到标准砂的粒径范围为75 μm~2 mm,不均匀系数为5.86,曲率系数为0.55;采用比重瓶法对标准砂进行比重试验,得到砂颗粒比重为2.65.橡胶颗粒由废旧橡胶轮胎分解所得,其粒径范围为2~3 mm,比重为1.73.标准砂与橡胶颗粒的级配见
Sand | Rubber | ||
---|---|---|---|
Sieve size/mm | Passing ratio (by mass)/% | Sieve size/mm | Passing ratio(by mass)/% |
2 | 100 | 3 | 100 |
1 | 64 | 2.5 | 62 |
0.5 | 30 | 2 | 0 |
0.25 | 26 | ||
0.1 | 9 | ||
0.075 | 0 |
Shape | Density/(g·c | Monofilament diameter/μm | Average length/mm | Tensile strength/MPa | Elasticity modulus/GPa | Rupture elongation/% | Acid and alkali resistance |
---|---|---|---|---|---|---|---|
Bunch monofilament | 0.91 | 33 | 12 | 469 | 4.24 | 28.4 | High |
聚丙烯纤维增强橡胶砂试样由标准砂、橡胶颗粒以及聚丙烯纤维混合拌制而成.3种材料之间较大的比重差异使其很难在干燥状态下进行混合,为解决不同组分之间混合不均匀的问题,本文提出了一种纤维增强橡胶砂半干拌式法制备方法.
尺寸为ϕ50×100 mm的实心圆柱形试样,其制备过程如下:(1)将标准砂在105 ℃的恒温烘箱内烘24 h,聚丙烯纤维在60 ℃的恒温烘箱内烘12 h;(2)称量所需标准砂、橡胶颗粒、聚丙烯纤维;(3)将称量好的标准砂和橡胶颗粒按制样初始含水率5%加水拌和均匀;(4)整平基材表面并均匀撒入聚丙烯纤维,用调匙将其戳入混合料中直至混合均匀;(5)在饱和器底部放置浸湿的滤纸和透水石,在内壁涂抹1层凡士林,将保鲜膜均匀贴于三瓣模具内壁;(6)将贴好保鲜膜的三瓣模具置于饱和器底座,称取1/4拌和均匀的聚丙烯纤维增强橡胶砂,用小勺装入三瓣模具内;(7)用击实锤振捣压实至指定高度,分4层装满三瓣模具,整平试样顶部,盖上顶盖并旋紧螺母,放入养护箱备用;(8)养护完成后取出试样,静力缓慢推出,脱模.试样制备完成后根据GB/T 50123—2019标准进行饱和.
采用英国GDS公司DYNTTS型循环三轴仪开展固结不排水剪切试验,试样的相对密实度为70%.相关研究表
聚丙烯纤维增强橡胶砂的弹性模量E0见

图1 聚丙烯纤维增强橡胶砂的弹性模量
Fig.1 E0 of PPF reinforced rubber sand
1963年,Janb
(1) |
式中:K、n为经验常数;Pa为标准大气压强,取101 kPa.
采用
wR/% | wF/% | E0/MPa | K | n | ||
---|---|---|---|---|---|---|
σ3 =50 kPa | σ3 =100 kPa | σ3 =200 kPa | ||||
0 | 0 | 50.94 | 83.46 | 119.77 | 802.74 | 0.59 |
10 | 0 | 26.71 | 39.46 | 62.06 | 391.47 | 0.64 |
0.6 | 25.85 | 38.06 | 62.11 | |||
0.9 | 26.01 | 38.41 | 61.00 | |||
1.2 | 25.40 | 37.81 | 60.06 | |||
1.5 | 24.98 | 37.86 | 61.07 | |||
20 | 0 | 20.51 | 30.72 | 51.78 | 298.05 | 0.73 |
0.6 | 18.20 | 29.42 | 49.68 | |||
0.9 | 19.30 | 28.94 | 50.26 | |||
1.2 | 18.26 | 27.96 | 48.98 | |||
1.5 | 16.85 | 28.00 | 47.69 | |||
30 | 0 | 15.27 | 25.23 | 43.21 | 245.06 | 0.77 |
0.6 | 14.68 | 24.73 | 41.25 | |||
0.9 | 14.11 | 22.65 | 42.11 | |||
1.2 | 14.57 | 23.57 | 40.93 | |||
1.5 | 14.55 | 24.04 | 42.35 |
试样的剪胀(缩)特性与孔压系数A密切相关.纯砂和聚丙烯纤维增强橡胶砂孔压系数A见

图2 纯砂和纤维增强橡胶砂的孔压系数
Fig.2 A of pure sand and PPF reinforced rubber sand
这主要是因为:(1)与标准砂颗粒相比,橡胶颗粒有明显的可压缩性,使聚丙烯纤维增强橡胶砂试样在剪切初期因橡胶颗粒的体积压缩而表现出剪缩特性,且当橡胶掺量增大时,试样的剪缩趋势也将更加显著.(2)在大应变剪胀区域,当橡胶掺量较低时,试样仍以聚丙烯纤维与标准砂颗粒之间的接触为主,聚丙烯纤维形成的空间网状结构可有效减小颗粒的移动,聚丙烯纤维掺量越高,对剪胀趋势的削弱作用越显著;而当橡胶掺量较高时,聚丙烯纤维与橡胶的接触面积增多,橡胶颗粒的压缩受到聚丙烯纤维的限制,低聚丙烯纤维掺量试样的可压缩性更大,进入剪胀状态也就更晚,反之,聚丙烯纤维掺量越高则越早进入剪胀状态.
纯砂和聚丙烯纤维增强橡胶砂的偏压力-轴向应变(q‑εa)曲线见

图3 纯砂和聚丙烯纤维增强橡胶砂的q‑εa曲线
Fig.3 q‑εa curves of pure sand and PPF reinforced rubber sand
聚丙烯纤维增强橡胶砂的偏应力-轴向应变关系表现为应变硬化,考虑到聚丙烯纤维的掺入使聚丙烯纤维增强橡胶砂在大应变下仍表现出极强的抗剪切能力,设定聚丙烯纤维增强橡胶砂的破坏应变εa,f=20%,破坏偏应力qf取εa,f所对应的偏应力值.聚丙烯纤维增强橡胶砂的破坏偏应力见

图4 聚丙烯纤维增强橡胶砂的破坏偏应力
Fig.4 qf of PPF reinforced rubber sand
qf‑wF拟合直线的斜率反映了聚丙烯纤维对试样破坏偏应力的增加效果.聚丙烯纤维增强橡胶砂qf‑wF拟合直线的斜率见

图5 qf‑wF拟合直线的斜率
Fig.5 Slope of linearly fitted line of qf‑wF
纤维之所以能提高破坏偏应力,主要是因为纤维的加筋效果取决于纤维-砂土界面间的相互作用,该相互作用主要为黏结力与摩擦力.对于本文无黏性砂土而言,主要表现为摩擦力,其主要由界面法向应力和粗糙程度控制,围压越大,法向力越大,纤维加筋效果越强.
聚丙烯纤维增强橡胶砂的总内摩擦角和有效内摩擦角见

图6 聚丙烯纤维增强橡胶砂的总内摩擦角和有效内摩擦角
Fig.6 Total internal friction angle and effective internal friction angle of PPF reinforced rubber sand
聚丙烯纤维增强橡胶砂的总黏聚力和有效黏聚力见

图7 聚丙烯纤维增强橡胶砂的总黏聚力和有效黏聚力
Fig.7 Total cohesive force and effective cohesion force of of PPF reinforced rubber sand
(1)聚丙烯纤维掺量对橡胶砂弹性模量的影响较小;聚丙烯纤维增强橡胶砂的弹性模量随橡胶掺量的增大而减小.根据Janbu经验公式对弹性模量进行拟合,并给出了不同工况下经验常数K和n的建议值.
(2)当橡胶掺量较少时,聚丙烯纤维增强橡胶砂具有先剪缩后剪胀的变形特征;而高橡胶掺量的聚丙烯纤维增强橡胶砂具有完全剪缩的趋势.
(3)聚丙烯纤维增强橡胶砂的偏应力-轴向应变关系为应变硬化型,在橡胶掺量相同的条件下,聚丙烯纤维掺量越多,应变硬化现象越明显.聚丙烯纤维掺量对橡胶砂破坏偏应力的提升效果十分显著,二者为线性递增关系,聚丙烯纤维在0%~1.5%范围内,聚丙烯纤维增强橡胶砂的破坏偏应力最高提高幅度可达3倍.
(4)聚丙烯纤维可有效提高橡胶砂的内摩擦角,聚丙烯纤维掺量与橡胶砂黏聚力的关系呈指数型增长趋势.
参考文献
EDIL T B, BOSSCHER P J. Engineering properties of tire chips and soil mixtures[J]. Geotechnical Testing Journal, 1994, 17(4):453‑464. [百度学术]
ZHOU E Q, ZONG Z X. Applicability of waste rubber particles as buried pipe backfill material[J]. KSCE Journal of Civil Engineering, 2021, 25(5):1609‑1620. [百度学术]
温学钧, 杨群. 粗废轮胎橡胶粒SMA混合料减振降噪路面研究[J]. 建筑材料学报, 2008, 11(2):230‑234. [百度学术]
WEN Xuejun, YANG Qun. Research on vibration and noise reduction pavement with coarse waste tire rubber granule SMA mixture[J]. Journal of Building Materials, 2008, 11(2):230‑234. (in Chinese) [百度学术]
庄海洋, 刘启菲, 吴琪, 等. 饱和橡胶颗粒-砂混合料的动力学特性[J]. 建筑材料学报, 2021, 24(3):597‑605. [百度学术]
ZHUANG Haiyang, LIU Qifei, WU Qi, et al. Kinetic properties of saturated rubber particle‑sand mixtures[J]. Journal of Building Materials, 2021, 24(3):597‑605. (in Chinese) [百度学术]
周恩全, 张蒋浩, 崔磊, 等. 橡胶-粉土轻质混合土击实及动变形特性研究[J]. 建筑材料学报, 2021, 24(6):1242‑1247. [百度学术]
ZHOU Enquan, ZHANG Jianghao, CUI Lei, et al. Compaction and dynamic deformation characteristics of rubber‑powdered lightweight hybrid soil[J]. Journal of Building Materials, 2021, 24(6):1242‑1247. (in Chinese) [百度学术]
MEHRJARDI G T, TAFRESHI S N M, DAWSON A R. Combined use of geocell reinforcement and rubber‑soil mixtures to improve performance of buried pipes[J]. Geotextiles and Geomembranes, 2012, 34:116‑130. [百度学术]
刘方成, 吴孟桃, 陈巨龙, 等. 土工格室加筋对橡胶砂动力特性影响的试验研究[J]. 岩土工程学报, 2017, 39(9):1616‑1625. [百度学术]
LIU Fangcheng, WU Mengtao, CHEN Julong, et al. Experimental study on the effect of geocell reinforcement on the dynamic properties of rubber sand[J]. Journal of Geotechnical Engineering, 2017, 39(9):1616‑1625. (in Chinese) [百度学术]
DHANYA J S, BOOMINATHAN A, BANERJEE S. Performance of geo‑base isolation system with geogrid reinforcement[J]. International Journal of Geomechanics, 2019, 19(7):1‑13. [百度学术]
刘方成, 吴孟桃, 景立平. 加筋橡胶砂复合垫层隔震性能试验研究[J]. 振动与冲击, 2019, 38(22):184‑189. [百度学术]
LIU Fangcheng, WU Mengtao, JING Liping. Experimental study on the seismic isolation performance of reinforced rubber sand composite bedding [J]. Vibration and Shock, 2019, 38(22):184‑189. (in Chinese) [百度学术]
陈巨龙. 土工袋加筋橡胶砂动力特性的大型循环单剪试验研究[D]. 株洲:湖南工业大学, 2017. [百度学术]
CHEN Julong. Large‑scale cyclic single‑shear experimental study on the dynamic properties of geobag reinforced rubber sand[D]. Zhuzhou:Hunan University of Technology, 2017. (in Chinese) [百度学术]
郑玉风, 刘方成, 张友良. 土工袋加筋橡胶砂垫层隔震效应试验研究[J]. 地震工程与工程振动, 2019, 39(3):73‑83. [百度学术]
ZHENG Yufeng, LIU Fangcheng, ZHANG Youliang. Experimental study on seismic isolation effect of geotechnical bag reinforced rubber sand bedding[J]. Earthquake Engineering and Engineering Vibration, 2019, 39(3):73‑83. (in Chinese) [百度学术]
MANOHAR D R, ANBAZHAGAN P. Shear strength characteristics of geosynthetic reinforced rubber‑sand mixtures[J]. Geotextiles and Geomembranes, 2021, 49(4):910‑920. [百度学术]
NOORZAD R, RAVESHI M. Mechanical behavior of waste tire crumbs‑sand mixtures determined by triaxial tests[J]. Geotechnical and Geological Engineering, 2017, 35:1793‑1802. [百度学术]
刘启菲, 庄海洋, 陈佳, 等. 废旧轮胎橡胶颗粒-砂混合料抗剪强度与破坏模式试验研究[J]. 岩土工程学报, 2021, 43(10):1887‑1895. [百度学术]
LIU Qifei, ZHUANG Haiyang, CHEN Jia, et al. Experimental study on shear strength and damage mode of waste tire rubber granule‑sand mixture[J]. Journal of Geotechnical Engineering, 2021, 43(10):1887‑1895. (in Chinese) [百度学术]
LEE J S, DODDS J, SANTAMARINA J C. Behavior of rigid‑soft particle mixtures[J]. Journal of Materials in Civil Engineering, 2007, 19(2):179‑184. [百度学术]
JANBU N. Soil compressibility as determined by oedometer and triaxial tests[C]// Proceedings of the 3rd European Conference on Soil Mechanics and Foundation Engineering. Wiesbaden:[s.n.], 1963, 1:19‑25. [百度学术]