摘要
采用最小包围盒(MBB)法确定骨料粒径,并与采用等体积球(EVS)法计算的骨料粒径进行比较,分析了这2种粒径计算方法对细观混凝土内部结构的影响.结果表明:采用MBB法计算的骨料粒径与室内试验采用筛分法确定的骨料粒径更为接近;与MBB法相比,EVS法低估了球状、片状和盘状骨料的粒径,且被低估的骨料占比由大到小依次为球状、片状和盘状,EVS法高估了棒状骨料的粒径;粒径计算方法对细观混凝土内部结构的影响因骨料形状类型不同而呈现一定差异性.
骨料的大小和形状等形态特征是影响混凝土强度和变形的重要参
作为室内试验的补充,细观混凝土数值分析已成为研究混凝土中骨料力学特性的常用方
事实上,实验室内使用方孔筛确定骨料级配时,骨料粒径一般是根据它刚好通过的筛孔尺寸确定
鉴于此,本文首先借助三维激光扫描获得三维骨料的真实形态,基于球谐逆变换法生成大量不同形态的三维数字化骨料;其次,采用EVS法和MBB法分别计算4种形状类型(球状、片状、盘状和棒状)骨料的粒径,分析这2种计算方法得到的粒径之间的差异性,建立了能够预测骨料粒径离散系数均值和离散度的模型;最后,研究了粒径计算方法对细观混凝土内部结构的影响.

图1 三维骨料模型生成流程
Fig.1 3D aggregate model generation process
采用EVS法和MBB法计算骨料粒径的示意图见

图2 采用EVS法和MBB法计算骨料粒径的示意图
Fig.2 Schematic diagram of using EVS method and MBB method to calculate aggregate particle size
为研究采用EVS法和MBB法测量的骨料粒径之间的相互关系,随机生成10组骨料,每组5 000个.由于骨料粒径受其形状类型的影响,因此在粒径测量之前,需要对骨料进行分类.根据
Number | α | β | Shape type |
---|---|---|---|
Ⅰ | >2/3 | <2/3 | Disc |
Ⅱ | >2/3 | >2/3 | Spherical |
Ⅲ | <2/3 | >2/3 | Rod |
Ⅳ | <2/3 | <2/3 | Blade |

图3 4种形状类型骨料形态及其分布
Fig.3 Morphology and distribution of four shape types of aggregates
采用EVS法和MBB法分别测量10组不同形状类型骨料的粒径.选取其中1组骨料数据绘制粒径散点图,并通过线性拟合,初步建立2种粒径之间的线性关系,如

图4 2种粒径的散点图
Fig.4 Scatter plots of two kinds of particle sizes
为分析同一形状类型骨料2种粒径的数字特征,引入粒径离散系数λ,其计算式为:
(1) |
研究表明,碎石骨料的形态特征大多服从正态分
(2) |
式中:μ为数学期望;σ为标准差.

图5 4种形状类型骨料的λ的概率密度分布
Fig.5 Probability density distribution of λ of four shape types of aggregates
Shape type | ||
---|---|---|
Disc | 0.836 | 0.082 |
Blade | 0.936 | 0.114 |
Spherical | 0.979 | 0.062 |
Rod | 1.143 | 0.119 |
虽然
(3) |
式中:为可靠度系数,取为3.
将
盘状:
(4) |
片状:
(5) |
球状:
(6) |
棒状:
(7) |

图6 4种形状类型骨料的2种粒径预测曲线与实测值对比
Fig.6 Comparison between predicted curve results and measured values of four shape types of aggregates

图7 4种形状类型骨料的2种粒径累积分布曲线对比
Fig.7 Comparison of cumulative distribution curves of two particle sizes of four shape types of aggregates

图8 4种形状类型单位骨料的体积和表面积
Fig.8 Volume and surface area of four shape types of unit aggregate
为研究不同粒径计算方法对细观混凝土内部结构的影响,基于1.1中的方法,生成4种形状类型的骨料库,每种形状类型骨料个数为3 000个.对同一形状类型的骨料,分别采用MBB法和EVS法计算其粒径,并按粒径对其进行缩放,得到粒径为1的单位骨料,并存入骨料库备用.“点阵法”骨料投放算法被用于生成混凝土细观结构,该方法将待投放域离散化为空间中有序排列的点阵,将三维空间中骨料间复杂的侵入判断问题转化为对待投骨料中点状态的判断,显著提高了骨料投放效

图9 基于2种粒径计算方法生成的细观混凝土模型中的骨料数量
Fig.9 Aggregate number in meso‑concrete model generated based on two particle size calculation methods

图10 细观混凝土模型中骨料体积累计分布(骨料体积分数为40%)
Fig.10 Cumulative distribution of aggregate volume in meso‑concrete model(aggregate volume fraction is 40%)
结合图
上述研究表明,粒径计算方法对细观混凝土中骨料的数量和体积均有显著影响.细观混凝土内部结构的差异性势必进一步影响混凝土的宏观力学性能.一方面,当骨料体积分数一定时,骨料数量越多意味着模型中存在更高体积分数的界面过渡区,界面过渡区是混凝土中的弱相,体积分数越大,对混凝土力学性能的降低效应越明
(1)因骨料粒径计算方法不同,不同形状类型骨料的2种粒径表现出明显的差异性.相比最小包围盒(MBB)法,采用等体积球(EVS)法低估了球状、片状和盘状骨料的粒径,粒径被低估的占比分别为65%、72%和98%;采用EVS法高估了棒状骨料的粒径,粒径被高估的占比为92%.
(2)4种形状类型骨料的2种粒径的粒径离散系数(λ)均服从正态分布.相比传统的线性拟合法,本文预测模型可以更好地预测不同形状类型骨料的2种粒径的λ的均值及离散度.
(3)与MBB法相比,采用EVS法测量球状、片状和盘状骨料时,通常得到的粒径更小且分布更窄;对于棒状骨料,采用EVS法得到的粒径更大且分布更宽.
(4)粒径计算方法对细观混凝土内部结构的影响因骨料形状不同表现出一定差异性.对于球状和片状骨料,粒径计算方法对混凝土内部结构的影响几乎可以忽略不计.对于盘状骨料,相比MBB法,采用EVS法生成的骨料数量更多、体积更小;棒状骨料则表现出相反趋势.
参考文献
JIN L, LIU K X, ZHANG R B, et al. Effects of content and size of aggregate on the mechanical responses of concrete at cryogenic temperatures[J]. Engineering Fracture Mechanics, 2022, 273:108737. [百度学术]
周尚志, 谌林, 刘明群. 骨料对混凝土力学性能的影响分析[J]. 建筑材料学报,2016,19(1):143‑148 [百度学术]
ZHOU Shangzhi, CHEN Lin, LIU Mingqun. Analysis on effect of aggregate on mechanical property of concrete[J]. Journal of Building Materials, 2016,19(1):143‑148.(in Chinese) [百度学术]
ZHAO X K, DONG Q, CHEN X Q, et al. Meso‑cracking characteristics of rubberized cement‑stabilized aggregate by discrete element method[J]. Journal of Cleaner Production, 2021, 316:128374. [百度学术]
SYVITSKI J P. Principles, methods and application of particle size analysis[M]. Cambridge:Cambridge University Press, 1991:125‑127 [百度学术]
TAFESSE S, FERNLUND J M R, BERGHOLM F. Digital sieving—Matlab based 3‑D image analysis[J]. Engineering Geology, 2012, 137:74‑84. [百度学术]
MA H F, XU W X, LI Y C. Random aggregate model for mesoscopic structures and mechanical analysis of fully‑graded concrete[J]. Computers & Structures, 2016,177:103‑113. [百度学术]
ZHOU X, XIE Y J, LONG G C, et al. DEM analysis of the effect of interface transition zone on dynamic splitting tensile behavior of high‑strength concrete based on multi‑phase model[J]. Cement and Concrete Research, 2021,149:106577. [百度学术]
陆秀峰, 刘西拉, 覃维祖. 从混凝土二维截面推测骨料粒径分布[J]. 岩石力学与工程学报, 2005, 24(17):3107‑3112. [百度学术]
LU Xiufeng, LIU Xila, QIN Weizu. Estimation of coarse aggregate size distribution from two‑dimensional section[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17):3107‑3112. (in Chinese) [百度学术]
LIU X, GARBOCZI E, GRIGORIU M, et al. Spherical harmonic‑based random fields based on real particle 3D data:Improved numerical algorithm and quantitative comparison to real particles[J]. Powder Technology, 2011, 207(1/2/3):78‑86. [百度学术]
ZHAO L H, ZHANG S H, HUANG D L, et al. A digitalized 2D particle database for statistical shape analysis and discrete modeling of rock aggregate[J]. Construction and Building Materials, 2020, 247:117906. [百度学术]
SU D, YAN W M. 3D characterization of general‑shape sand particles using microfocus X‑ray computed tomography and spherical harmonic functions, and particle regeneration using multivariate random vector[J]. Powder Technology, 2018, 323:8‑23. [百度学术]
MORA C F, KWAN A K H, CHAN H C. Particle size distribution analysis of coarse aggregate using digital image processing[J]. Cement and Concrete Research, 1998, 28(6):921‑932. [百度学术]
CEPURITIS R, GARBOCZI E J, FERRARIS C F, et al. Measurement of particle size distribution and specific surface area for crushed concrete aggregate fines[J]. Advanced Powder Technology, 2017, 28(3):706‑720. [百度学术]
UENO A, OGAWA Y. Influence of coarse aggregate shape on optimum fine to total aggregate ratio using a virtual voids‑ratio diagram in concrete compaction[J]. Cement and Concrete Composites, 2020,106:103463. [百度学术]
BLOTT S J, PYE K. Particle shape:A review and new methods [百度学术]
of characterization and classification[J]. Sedimentology, 2008, 55(1):31‑63. [百度学术]
LOZ P H F, ANGULO S C, REBMANN M S, et al. Use of a 3D structured‑light scanner to determine volume, surface area, and shape of aggregates[J]. Journal of Materials in Civil Engineering, 2021, 33(9):04021240. [百度学术]
OROSZ Á, ANGELIDAKIS V, BAGI K. Surface orientation tensor to predict preferred contact orientation and characterise the form of individual particles[J]. Powder Technology, 2021, 394:312‑325. [百度学术]
WANG S D, MIAO Y H, WANG L B. Investigation of the force evolution in aggregate blend compaction process and the effect of elongated and flat particles using DEM[J]. Construction and Building Materials, 2020, 258:119674. [百度学术]
XIE H, FENG J L. Implementation of numerical mesostructure concrete material models:A dot matrix method[J]. Materials, 2019, 12 (23):3835 [百度学术]
WEI D H, WANG J F, NIE J Y, et al. Generation of realistic sand particles with fractal nature using an improved spherical harmonic analysis[J]. Computers and Geotechnics, 2018, 104:1‑12. [百度学术]
ZHU T Y, CHEN Z H, ZHANG L F, et al. Modeling and fracture behavior of mesoscale concrete considering actual aggregate shapes and placement domain shapes[J]. Construction and Building Materials, 2023, 400:132821. [百度学术]
ZINGG T. Beitrag zur schotteranalyse[D]. Zurich:ETH Zurich, 1935. [百度学术]
李北星, 王威, 陈梦义, 等.粗骨料的等轴率、圆度和球度及其相互关系[J]. 建筑材料学报, 2015,18(4):531‑536. [百度学术]
LI Beixing, WANG Wei, CHEN Mengyi, et al. Isometric ratio, roundness and sphericity of coarse aggregates and their relationship[J]. Journal of Building Materials, 2015,18(4):531‑536. (in Chinese) [百度学术]
HE S, YANG E H. Non‑normal distribution of residual flexural strengths of steel fiber reinforced concretes and its impacts on design and conformity assessment[J]. Cement and Concrete Composites, 2021, 123:104207. [百度学术]
BEYGI M H A, KAZEMI M T, IMAN M, et al. The influence of coarse aggregate size and volume on the fracture behavior and brittleness of self‑compacting concrete[J]. Cement and Concrete Research, 2014, 66:75‑90. [百度学术]