摘要
为定量表征集料表面纹理构造,采用激光纹理扫描仪获取单档集料及其混合集料的表面纹理构造信息,对单档集料及其混合集料的表面纹理构造波长斜率谱密度(SSD)曲线的分布规律、特征参数及相互关系进行研究.结果表明:单档集料及其混合集料的表面纹理构造波长SSD曲线均符合Gaussmod函数方程,决定系数
众多研究表明,集料作为沥青路面最重要的原材料之一,其表面纹理构造或形态特征不仅与混合料的高温性能、耐久性、黏结特性及水稳定性能等路用性能密切相
鉴于此,本文选用玄武岩、石灰岩及安山岩等3种常见岩石集料作为原材料,通过区域三维激光纹理扫描仪提取单档集料与混合集料的表面纹理构造信息,选取构造波长斜率谱密度(SSD)作为表征指标,对单档、混合集料的表面纹理构造波长SSD曲线分布规律、相互关系进行研究,建立集料表面纹理构造波长SSD曲线的函数方程;提出通过单档集料预测混合集料表面纹理构造波长SSD曲线的预测方程,选取峰面积、峰值以及节点波长面积比等SSD曲线特征参数进行误差分析,从而对预测方程有效性进行验证;最后,结合工程实践,对路面车内噪音与集料SSD曲线特征参数进行相关分析,以期为路面集料原材料选择或级配设计提供技术支撑.
试验对象为单档集料及其按照一定比例组成的混合集料.试件制备过程如下:称取(1 200±10) g集料,拌和均匀后,平铺于圆孔型模具内,然后将集料表面整理平整即可.其中,圆孔型模具内径为280 mm、深度为10 mm.

图1 试件制作模具及典型观测试件
Fig.1 Preparation mold and typical observation specimen
试验所用集料包括3种岩石,分别为玄武岩、石灰岩及安山岩.考虑到沥青路面表面功能磨耗层常用集料规格,选用的集料规格分别为0~3、3~5、5~10 mm三档,其筛分组成见
Type | Specification/mm | Passing ratio(by mass)/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
13.2 mm | 9.5 mm | 4.75 mm | 2.36 mm | 1.18 mm | 0.6 mm | 0.3 mm | 0.15 mm | 0.075 mm | ||
Basalt | 5-10 | 100.0 | 99.3 | 7.0 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 |
3-5 | 100.0 | 100.0 | 99.8 | 51.1 | 31.9 | 20.1 | 10.8 | 7.4 | 3.8 | |
0-3 | 100.0 | 100.0 | 100.0 | 81.7 | 53.2 | 27.9 | 11.6 | 7.6 | 2.8 | |
Limestone | 5-10 | 100.0 | 93.4 | 4.0 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 |
3-5 | 100.0 | 100.0 | 94.3 | 48.3 | 27.5 | 18.4 | 9.9 | 7.0 | 3.2 | |
0-3 | 100.0 | 100.0 | 100.0 | 76.2 | 49.4 | 26.1 | 10.3 | 7.2 | 2.0 | |
Andesite | 5-10 | 100.0 | 95.2 | 3.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 |
3-5 | 100.0 | 100.0 | 98.3 | 49.6 | 27.5 | 15.9 | 11.4 | 8.3 | 3.7 | |
0-3 | 100.0 | 100.0 | 100.0 | 77.5 | 47.2 | 24.9 | 11.6 | 6.9 | 2.8 |
表面构造纹理三维特征评价是通过测量表面区域,获得包含X、Y、Z三个维度的表面空间信息,从而量化集料纹理空间特征和功能特
在AMES LTS‑9500型激光纹理扫描仪分析系统中,表面纹理构造波长(或波数)PSD以斜率谱密度SSD及高程谱密度(ESD)2种形式进行表述.两者都代表了不同波长(波数)下表面高程起伏程度的分布,但是SSD数据能更好地显示高程及粗糙程度的变化差
(1) |
式中:Dλ为构造波长为λ时的斜率谱密度;N为基线内的坐标数;zi为坐标i的高程值;Δx为坐标之间的水平距离.
综上,构造波长SSD物理意义明确,它将PSD转化为物理意义更加明确的表面波动特征,与集料表面纹理轮廓更加接近,纹理构造信息更加全面.
试验发现,在0.5 mm以下波长范围内易产生大量采集噪点,对数据干扰极大,致使数据离散、重复性差.因此,必须设置滤波器对表面纹理数据进行处
(2) |
(3) |
式中:y0、t0、A、w、λc为方程参数;y、z均为变量.

图2 单档集料构造波长SSD分布曲线
Fig.2 SSD distribution curves of single aggregate construction wavelength
Type | Specification/mm | y0 | A | λc | w | t0 | RSS | |
---|---|---|---|---|---|---|---|---|
Basalt | 0-3 | 0.004 | 8.578 | 1.108 | 0.248 | 6.436 | 1.000 | 0.008 |
3-5 | 0 | 30.808 | 1.615 | 0.695 | 8.633 | 1.000 | 0.000 | |
5-10 | -0.121 | 116.921 | 1.499 | 0.659 | 21.861 | 1.000 | 0.241 | |
Limestone | 0-3 | 0.007 | 10.739 | 1.137 | 0.249 | 6.507 | 1.000 | 0.004 |
3-5 | 0.016 | 38.837 | 1.808 | 0.756 | 8.367 | 1.000 | 0.043 | |
5-10 | 0.003 | 166.822 | 1.668 | 0.626 | 24.547 | 1.000 | 0.627 | |
Andesite | 0-3 | 0 | 8.536 | 1.136 | 0.264 | 5.239 | 1.000 | 0.009 |
3-5 | -0.072 | 31.944 | 1.409 | 0.658 | 9.599 | 1.000 | 0.260 | |
5-10 | 0.072 | 67.681 | 1.655 | 0.585 | 10.465 | 1.000 | 0.362 |
由
为方便叙述及后续分析,参照波谱分析方法,本文所用特征参数包括SSD曲线峰值、峰面积、节点波长面积及其面积比.其中:(1)峰值代表SSD曲线全波段内纹理构造起伏强度最大值,其对应波长可视为扫描区域内构造纹理特征波长;(2)峰面积是指构造波长SSD曲线全波段范围内的卷积面积,如

图3 特征参数示意图
Fig.3 Schematic diagram of characteristic parameters
值得注意是,节点波长及其相关概念是为方便叙述及数学表达所做的定义,并不体现SSD分布特征,节点波长在波段范围内可任意选择.
路面工程中,集料多以混合集料方式应用,若通过单档集料SSD曲线能够准确、稳定地预测混合集料SSD曲线,则在混合集料比例调试时,便可以减少不必要的工作,提高配合比调试效率.假设混合集料表面纹理构造波长可由各组成单档集料构造波长线性叠加,即可通过单档集料构造波长SSD曲线及组成比例,来预测混合集料表面纹理构造波长SSD曲线,其预测方程如下:
(4) |
式中:Di为混合集料第i个波长的SSD;Pj为第j档集料的比例组成;D为单档集料第i个波长的SSD.
为验证上述假设,按照不同集料比例配置混合集料,通过
Mixed aggregate | Composition(by mass)/% | Specific surface area/( | Asphalt content(by mass)/% | Asphalt film thickness/μm | ||
---|---|---|---|---|---|---|
0-3 mm | 3-5 mm | 5-10 mm | ||||
A | 40 | 20 | 40 | 5.094 | 5.8 | 10.2 |
B | 25 | 60 | 15 | 6.035 | 6.6 | 10.1 |
C | 65 | 15 | 20 | 6.237 | 6.8 | 10.1 |
D | 70 | 25 | 5 | 6.669 | 7.2 | 10.1 |

图4 混合集料构造波长SSD曲线
Fig.4 SSD curves of mixed aggregate construction wavelength
由

图5 混合集料SDD曲线峰值、峰面积的实测值与预测值
Fig.5 Measured and forecast peak value and peak area for SDD curves of mixed aggregate
Node wavelength/mm | A | B | C | D | ||||
---|---|---|---|---|---|---|---|---|
Measured | Forecast | Measured | Forecast | Measured | Forecast | Measured | Forecast | |
0.1 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
0.3 | 100.00 | 100.00 | 99.98 | 99.99 | 99.99 | 100.00 | 99.96 | 99.99 |
0.6 | 99.91 | 99.92 | 99.85 | 99.97 | 99.89 | 99.98 | 99.82 | 99.96 |
1.1 | 99.44 | 99.38 | 99.19 | 99.29 | 99.28 | 99.38 | 99.14 | 99.18 |
2.3 | 95.33 | 94.78 | 93.43 | 91.02 | 93.99 | 92.31 | 93.28 | 89.73 |
4.6 | 83.44 | 83.35 | 76.36 | 75.85 | 79.94 | 79.10 | 76.00 | 72.82 |
9.1 | 64.07 | 64.77 | 51.63 | 53.46 | 58.31 | 58.59 | 50.41 | 49.00 |
18.3 | 37.65 | 38.82 | 25.63 | 27.16 | 31.59 | 32.11 | 21.77 | 23.43 |
36.5 | 14.47 | 14.92 | 12.48 | 9.15 | 12.50 | 10.59 | 4.14 | 8.42 |
73.0 | 6.84 | 5.84 | 9.44 | 3.18 | 8.29 | 2.15 | 0.15 | 3.84 |
146.1 | 6.84 | 5.84 | 9.44 | 3.18 | 8.29 | 2.15 | 0.15 | 3.84 |

图6 特征参数预测值与实测值的相对误差
Fig.6 Relative error between forecast value and measured value of characteristic parameters
在采集表面纹理时,会出现大量程度不一的白噪点,即使通过滤波设置也难以消除.白噪点会造成SSD峰值增大,在构造波长固定的情况下,峰面积、峰值的预测值与实测值呈现较大差异,导致预测精度的不稳定性.在数学意义上,节点波长面积比降低了白噪点的影响.但是,当节点波长超过一定范围后,其波长的SSD大幅下降,节点波长卷积面积变小,这时节点波长面积比的敏感性显著增加,数值上较小的变动便导致较大的误差.因此,采用节点波长面积比作为预测依据时,建议选定的节点波长不宜超过18.3 mm.
项目组将A、B、C、D这4种混合集料作为目标配合比,用于MS‑Ⅲ型微表处路面工程铺筑.开放交通1个月后,按照GB/T 18697—2002《声学 汽车车内噪声测量方法》,对4种微表处路面的车内噪音进行检测.综合考虑车辆工况及高速公路行车速度安全等问题,车内噪音测试车型统一为KIA Sportage,行车速度均为100 km/h.测试完成后,将车内噪音与构造波长SSD曲线特征参数进行相关性分析,结果见

图7 特征参数与车内噪音相关性分析
Fig.7 Correlation analysis between characteristic parameters and interior noise
结合前文认为,通过选择合适的节点波长,可以通过单档集料的SSD曲线来准确稳定地预测混合集料的SSD节点波长面积比,而SSD曲线节点波长面积比与车内噪音具有良好的线性相关性.因此,在原材料选择或级配设计时,应依据集料构造纹理波长SSD分布及预测规律,以节点波长面积比作为指标,通过控制SSD曲线及节点波长面积比,来达到对原材料或级配进行优化的目的.
(1)单档集料、混合集料的表面纹理构造波长分布具有一致性,其表面纹理构造波长SSD曲线均符合Gaussmod函数方程.
(2)通过单档集料构造波长SSD以及线性叠加关系,建立了混合集料SSD曲线预测方程.当节点波长小于18.3 mm时,该方程能够准确预测混合集料SSD曲线节点波长面积比,相对误差在5%以内;预测方程对SSD曲线峰值和峰面积的预测准确度不足.
(3)SSD曲线节点波长面积比、峰面积与车内噪音具有良好的线性关系,其决定系数
需要说明的是,限于篇幅等原因,本文所论述的主要是单档集料与混合料集料的表面纹理构造波长SSD分布规律及特征参数的相互关系,其工程应用验证也仅限于MS‑Ⅲ型微表处路面车内噪音,因此在研究的系统性和全面性方面还存在很多不足.下一步需要结合更多路面工程需求,着重从级配类型、混合料性能与表面纹理构造波长分布等相关影响因素角度出发,开展更加系统全面的研究.
参考文献
李晓燕,卜胤,汪海年,等. 粗集料形态特征的定量评价指标研究[J]. 建筑材料学报,2015,18(3):524‑530. [百度学术]
LI Xiaoyan, BU Yin, WANG Hainian, et al. Research on quantitative evaluation of morphological characteristic of coarse aggregates[J]. Journal of Building Materials, 2015, 18(3):524‑530.(in Chinese) [百度学术]
王端宜,胡迟春, KUTAY E. 沥青混合料集料微观结构的三维重构与计算[J]. 建筑材料学报,2011,14(1):41‑46. [百度学术]
WANG Duanyi, HU Chichun, KUTAY E. Three dimensional reconstruction and calculation of aggregate structure in asphalt mixture[J].Journal of Building Materials, 2011,14(1):41‑46. (in Chinese) [百度学术]
王志祥,李建阁,张争奇. 集料形态特征对集料-沥青黏附及水稳定性的影响[J]. 建筑材料学报,2021,24(5):1039‑1047. [百度学术]
WANG Zhixiang, LI Jiange, ZHANG Zhengqi. Effects of aggregate morphological characteristics on adhesion of aggregate‑asphalt and its moisture stability[J]. Journal of Building Materials, 2021, 24(5):1039‑1047. (in Chinese) [百度学术]
季节,郑文华,翟鹏,等. 采用原子力显微镜评价集料的微纳观特征[J]. 建筑材料学报,2018,21(4):667‑671,682. [百度学术]
JI Jie, ZHENG Wenhua, ZHAI Peng, et al. Evaluation on micro‑and‑nano scale characteristics of aggregate based on atomic force microscope technology[J]. Journal of Building Materials, 2018, 21(4):667‑671,682. (in Chinese) [百度学术]
申爱琴,刘波,郭寅川,等. 隧道路面钢渣沥青混合料抗滑性能衰减试验研究[J]. 建筑材料学报,2019,22(2):284‑291. [百度学术]
SHEN Aiqin, LIU Bo, GUO Yinchuan, et al. Skid resistance attenuation of steel slag asphalt mixtures on tunnel pavement[J]. Journal of Building Materials, 2019, 22(2):284‑291. (in Chinese) [百度学术]
胡红松,路国栋,张争奇,等.不同路面加铺层抗滑降噪效果室内研究[J].铁道科学与工程学报,2017,14(1):44‑51. [百度学术]
HU Hongsong, LU Guodong, ZHANG Zhengqi, et al. Indoor study on anti‑sliding and noise‑reducing of different pavement overlays[J] Journal of Railway Science and Engineering, 2017,14(1):44‑51. (in Chinese) [百度学术]
陈搏.基于胎/路有效接触特性的沥青路面抗滑性能评价方法研究[D].广州:华南理工大学,2018. [百度学术]
CHEN Bo. Research on asphalt pavement skid resistance performance evaluation method of based on tire‑pavement effective contact characteristics[D].Guangzhou:South China University of Technology, 2018. (in Chinese) [百度学术]
SERIGOS P A , DE FORTIER SMIT A, PROZZI J A .Incorporating surface microtexture in the prediction of skid resistance of flexible pavements[J].Transportation Research Record, 2014,2457:105‑113. [百度学术]
刘玉恒.低噪声微表处技术关键技术研究[D].南京:东南大学,2016. [百度学术]
LIU Yuheng. Key technologies of low noise micro‑surfacing[D].Nanjing:Southeast University, 2016. (in Chinese) [百度学术]
张冉.微表处路面噪声机理与减噪技术研究[D].哈尔滨:哈尔滨工业大学,2011. [百度学术]
ZHANG Ran. Study on noise mechanism and noise reduction measures of micro‑surfacing pavement[D]. Harbin:Harbin Institute of Technology, 2011. (in Chinese) [百度学术]
中国国家标准化管理委员会. 产品几何技术规范 GPS 表面结构 区域法 第6部分:表面结构测量方法的分类:GB/T 33523.6—2017[S]. [百度学术]
Standardization Administration. Geometrical product specifications GPS_surdace texture areal‑Part 6 Classification of methods for measuring surface texture:GB/T 33523.6—2017[S]. (in Chinese) [百度学术]
彭毅,李强,战友,等. 基于区域三维纹理特征的路面抗滑性能评估[J]. 东南大学学报(自然科学版),2020,50(4):667‑676. [百度学术]
PENG Yi, LI Qiang, ZHAN You, et al. Pavement skid resistance evaluation based on 3D areal texture characterization[J]. Journal of Southeast University(Natural Science), 2020,50(4):667‑676. (in Chinese) [百度学术]
LI Q J, YANG G W, WANG K C P, et a1.Novel macro‑ and microtexture indicators for pavement friction by using high‑resolution three‑dimensional surface data[J].Transportation Research Record,2017,2641(1):164‑176. [百度学术]
杨洁,李乐.基于机器视觉的表面粗糙度测量与三维评定[J].光学技术,2016,42(6):491‑495. [百度学术]
YANG Jie.LI Le.Surface roughness measurement and three‑dimensional assessment based on machine vision[J].Optical Technique,2016,42(6):491‑495.(in Chinese) [百度学术]
GARCIA N Z. Predicting friction with improved texture characterization[D].Austin:University of Texas at Austin,2017. [百度学术]
HARTIKAINEN L, PETRY F, WESTERMANN S. Frequency‑wise correlation of the power spectral density of asphalt surface roughness and tire wet friction[J].Wear,2014,317(1/2):111‑119. [百度学术]
王大为,王宠惠,STEINAUER Bernhard,等.德国不限速高速公路路面平整度评价方法综述[J].中国公路学报,2019,32(4):105‑113,129. [百度学术]
WANG Dawei, WANG Chonghui, STEINAUER Bernhard, et al. Overview on evaluation methods of pavement evenness for pavements without speed limiting expressway in Germany[J]. Chinese Journal of Highway, 2019, 32(4):105‑113,129. (in Chinese) [百度学术]
段虎明,石锋,马颖,等.基于功率谱密度的路面评价与特征参数提取[J].振动与冲击,2013,32(4):26‑30. [百度学术]
DUAN Huming, SHI Feng, MA Ying, et al. Evaluation and extracting characteristic parameters for a road profile based on PSD[J]. Journal of Vibration and Shock, 2013, 32(4):26‑30. (in Chinese) [百度学术]
SAYERS M W, KARAMIHAS S M. Little book of profiling—Basic information about measuring and interpreting road profiles[M]. Ann Arbor:University of Michigan, 1998. [百度学术]
KAMPSTRA P. Beanplot:A boxplot alternative for visual comparison of distributions[J]. Journal of Statistical Software, 2007, 28:1‑9. [百度学术]