摘要
以锡尾矿(T)、湖泊底泥(L)、粉煤灰漂珠(F)为原料,水玻璃为黏结剂,制备高强陶粒,利用正交试验、单因素优化试验探究热处理制度及水玻璃掺量对陶粒性能的影响.结果表明:在原料配比为m(T)∶m(L)∶m(F)=65∶25∶10、水玻璃掺量为325 mL/kg、预热温度为600 ℃、烧结温度为1 120 ℃、烧结时间为15 min时,可制备1 h吸水率为0.41%、筒压强度为8.53 MPa、密度等级为600级的高强陶粒;随烧结温度升高,陶粒中物相存在Fe2O3→Fe3O4→MgFe2O4的转化;添加的水玻璃为陶粒提供了部分Si—O键,生成透长石、霞石等晶相,提高了基体强度.
锡尾矿是锡矿开发处理后的主要废弃物,中国贮存量约3亿
陶粒因轻质、高强等优点,在建筑、农业等领域有良好的应
本文以锡尾矿、湖泊底泥、粉煤灰漂珠为原料制备高强陶粒,通过正交试验、单因素优化试验探究热处理制度对陶粒性能的影响规律,确定最佳制备条件并深入探讨水玻璃对陶粒性能的影响机理.本研究可在有效提高锡尾矿消纳量的同时,实现多源固废协同制备高性能陶粒,推动大宗固废在建筑及道路工程中的应用,促进建筑工业的可持续发展.
锡尾矿(T)取自云南省个旧市某尾矿库的氧化型锡尾矿,自然晾干后经研磨并过75~150 μm筛后备用.湖泊底泥(L)取自昆明市滇池疏浚工程,干燥后经研磨并过150 μm筛后备用.粉煤灰漂珠(F)购自河南某材料公司,粒径为75~150 μm.黏结剂采用水玻璃,模数为2.25.锡尾矿、湖泊底泥、粉煤灰漂珠的X射线荧光光谱仪(XRF)测试结果如
Raw material | SiO2 | Al2O3 | MgO | Fe2O3 | CaO | K2O | SO3 | TiO2 | ZnO | P2O5 | Na2O | Other |
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | 38.41 | 12.38 | 18.25 | 12.06 | 8.53 | 3.29 | 1.78 | 1.19 | 1.18 | 0.28 | 0.13 | 2.52 |
L | 49.40 | 26.19 | 1.96 | 14.01 | 1.28 | 2.58 | 0.30 | 3.46 | 0.02 | 0.33 | 0.19 | 0.28 |
F | 58.08 | 34.55 | 0.60 | 2.06 | 0.90 | 1.21 | 0.34 | 1.20 | 0.01 | 0.10 | 0.69 | 0.26 |

图1 原料XRD图谱
Fig.1 XRD patterns of raw materials
将锡尾矿、湖泊底泥、粉煤灰漂珠利用V型搅拌器均匀混合后加入水玻璃充分搅拌,制成直径为9~10 mm的生料球,自然干燥至恒重后,将生料球放入电阻炉中通过预热、煅烧两道工序进行烧结,烧结完成随炉冷却至室温,取出烧制好的陶粒样品备用.
陶粒的物理性能,包括堆积密度、表观密度、1 h吸水率等的测定参考GB/T 17431.2—2010《轻集料及其试验方法 第2部分:轻集料试验方法》进行.为解决试验室制备样品量难以达到国标中测定筒压强度所需试样量的问题,本文在国标筒压强度测试方法基础上,提出陶粒的小筒筒压强度测定方法,对测定陶粒筒压强度的承压筒进行改良,在如

图2 承压筒
Fig.2 Pressure cylinder(size:mm)
前期以锡尾矿-湖泊底泥为原料烧制陶粒预试验结果表明,湖泊底泥中含有的有机成分能促进陶粒造孔,确定湖泊底泥的掺量为25%.为获得良好的生料球成型塑性,水玻璃添加量为300~350 mL/kg,锡尾矿-湖泊底泥-粉煤灰漂珠配方如
Raw material | TLF75 | TLF65 | TLF55 |
---|---|---|---|
T | 75 | 65 | 55 |
L | 25 | 25 | 25 |
F | 0 | 10 | 20 |

图3 TLF65生料球粉末料的TG‑DTA曲线
Fig.3 TG‑DTA curve of TLF65 raw material ball powder
根据原料的XRF与TG‑DTA分析,设计4因素3水平L9(
No. | A | B | C | D | Results | ||||
---|---|---|---|---|---|---|---|---|---|
m(T)∶m(L)∶m(F) | Preheating temperature/℃ | Sintering temperature/℃ | Sintering time/min | Bulk density/(kg· | Apparent density/(kg· | 1 h water absorption/% | Cylinder compressive strength/MPa | ||
1 | 75∶25∶0 | 350 | 1 100 | 10 | 660.83 | 1 497.64 | 0.27 | 7.6 | |
2 | 75∶25∶0 | 450 | 1 120 | 15 | 608.60 | 1 375.65 | 0.32 | 6.7 | |
3 | 75∶25∶0 | 550 | 1 140 | 20 | 538.17 | 1 185.53 | 3.16 | 5.7 | |
4 | 65∶25∶10 | 350 | 1 120 | 20 | 558.09 | 1 244.48 | 0.44 | 8.5 | |
5 | 65∶25∶10 | 450 | 1 140 | 10 | 484.71 | 1 111.89 | 1.80 | 5.7 | |
6 | 65∶25∶10 | 550 | 1 100 | 15 | 592.82 | 1 319.33 | 0.27 | 7.7 | |
7 | 55∶25∶20 | 350 | 1 140 | 15 | 385.61 | 890.51 | 3.95 | 5.6 | |
8 | 55∶25∶20 | 450 | 1 100 | 20 | 497.16 | 1 161.40 | 0.37 | 7.0 | |
9 | 55∶25∶20 | 550 | 1 120 | 10 | 468.45 | 1 071.16 | 0.41 | 7.1 |
Property | Factor | Average | R | Rank of influence | ||
---|---|---|---|---|---|---|
1j | 2j | 3j | ||||
Bulk density/(kg· | A | 602.54 | 545.21 | 450.41 | 152.13 | 1 |
B | 534.84 | 530.16 | 533.15 | 4.68 | 4 | |
C | 583.61 | 545.05 | 469.50 | 114.11 | 2 | |
D | 538.00 | 529.01 | 531.14 | 8.99 | 3 | |
Apparent density/(kg· | A | 1 352.94 | 1 225.23 | 1 041.02 | 311.91 | 1 |
B | 1 210.88 | 1 216.31 | 1 192.00 | 24.31 | 4 | |
C | 1 326.12 | 1 230.43 | 1 062.64 | 263.48 | 2 | |
D | 1 226.89 | 1 195.16 | 1 197.14 | 31.73 | 3 | |
1 h water absorption/% | A | 1.25 | 0.83 | 1.58 | 0.74 | 2 |
B | 1.55 | 0.83 | 1.28 | 0.72 | 3 | |
C | 0.30 | 0.39 | 2.97 | 2.66 | 1 | |
D | 0.83 | 1.51 | 1.32 | 0.69 | 4 | |
Cylinder compressive strength/MPa | A | 6.67 | 7.32 | 6.56 | 0.76 | 3 |
B | 7.26 | 6.45 | 6.83 | 0.80 | 2 | |
C | 7.44 | 7.44 | 5.66 | 1.79 | 1 | |
D | 6.79 | 6.69 | 7.06 | 0.37 | 4 |
根据正交试验结果,选择原料配比为m(T)∶m(L)∶m(F)=65∶25∶10,水玻璃添加量为325 mL/kg,并结合其TG‑DTA曲线分析(

图4 预热温度对陶粒性能的影响
Fig.4 Effect of preheating temperature on properties of ceramsite
由
为进一步探究预热温度对陶粒的影响,对性能差异较大的400、500、600 ℃陶粒进行XRD分析,如

图5 不同预热温度下陶粒XRD图
Fig.5 XRD spectra of ceramsite at different preheating temperatures
烧结温度过低会使体系液相熔融程度过低而无法制备出陶粒,烧结温度过高会使体系熔融过度而破坏陶粒的结

图6 烧结温度对陶粒性能的影响
Fig.6 Effect of sintering temperature on the properties of ceramsite
由

图7 不同烧结温度下陶粒的宏观形貌
Fig.7 Macromorphology of ceramsite at different sintering temperatures
为进一步探究烧结温度对陶粒的影响,对所得陶粒进行XRD分析,如

图8 不同烧结温度下陶粒的XRD图谱
Fig.8 XRD spectra of ceramsite at different sintering temperatures
在最佳热处理条件下,分别用水玻璃添加量为0、275、325、375 mL/kg烧制陶粒,所制备陶粒的性能测试结果如

图10 水玻璃添加量对陶粒性能的影响
Fig.10 Effect of sodium silicate content on the properties of ceramsite
由
进一步探究添加水玻璃对陶粒性能的影响,对不同水玻璃添加量的陶粒进行XRD分析如

图11 不同水玻璃添加量下陶粒的XRD图谱
Fig.11 XRD patterns of ceramsite at different sodium silicate contents
水玻璃对陶粒晶相的影响如

图12 水玻璃对陶粒晶相的影响
Fig.12 Effect of sodium silicate on the crystal phase of ceramsite
(1)当锡尾矿、湖泊底泥、粉煤灰漂珠的质量分数分别为65%、25%、10%,水玻璃掺量为325 mL/kg,预热温度为600 ℃,烧结温度为1 120 ℃,烧结时间为15 min时,可制得1 h吸水率为0.41%、筒压强度为8.53 MPa的烧结陶粒.
(2)热处理制度对陶粒物理性能的影响程度由强到弱依次为烧结温度、预热温度、烧结时间.随烧结温度与烧结时间的变化,单颗粒陶粒抗压强度、小筒筒压强度和比强度变化趋势一致.
(3)水玻璃对陶粒物相组成的影响体现在其为陶粒物质反应提供部分Si—O键,使其生成更多含有玻璃特质的透长石、霞石等晶相,从而提高了陶粒的强度.
参考文献
张靖, 朱连明. 锡矿尾矿库重金属污染特征分析[J]. 矿冶, 2022, 31(4):122‑126. [百度学术]
ZHANG Jing, ZHU Lianming. Analysis on heavy metal pollution characteristics of tin mine tailings pond[J]. Ming and Metallurgy, 2022, 31(4):122‑126. (in Chinese) [百度学术]
WANG G, XIAO H Z , LIANG G C, et al. Leaching characteristics and stabilization of heavy metals in tin‑polymetallic tailings by sodium diethyl dithiocarbamate intercalated montmorillonite (DDTC‑Mt)[J]. Journal of Cleaner Production, 2022, 344:131041. [百度学术]
中华人民共和国国家发展和改革委员会. 关于“十四五大宗固体废弃物综合利用的指导意见”[R]. 北京:中华人民共和国国家发展和改革委员会, 2021. [百度学术]
The National Development and Reform Commission. Guidance on comprehensive utilization of bulk solid wastes during the 14th Five Year Plan
[R]. Beijing:National Development and Reform Commission, 2021. (in Chinese). [百度学术]
安树好, 刘娟红, 张月月,等. 硅铝型铁尾矿粉的无熟料固结性能及水化机理[J]. 建筑材料学报, 2023, 26(2):172‑178. [百度学术]
AN Shuhao, LIU Juanhong, ZHANG Yueyue, et al. Non‑clinker consolidation performance and hydration mechanism of silicon aluminum iron tailing powder[J]. Journal of Building Materials, 2023,26(2):172‑178. (in Chinese) [百度学术]
卢佳涛, 孔丽娟, 樊子瑞, 等. 铁尾矿砂-地聚物复合材料的界面与性能[J]. 建筑材料学报, 2022, 25(6):585‑590,606. [百度学术]
LU Jiatao, KONG Lijuan, FAN Zirui, et al. Interface and performance of iron tailings‑geopolymer composites[J]. Journal of Building Materials, 2022,25(6):585‑590,606. (in Chinese) [百度学术]
王小娟, 刘路, 贾昆程, 等. 陶粒泡沫混凝土的力学性能及吸能特性[J]. 建筑材料学报, 2021, 24(1):207‑215. [百度学术]
WANG Xiaojuan, LIU Lu, JIA Kuncheng, et al. Mechanical properties and energy absorption characteristics of ceramsite foam concrete[J]. Journal of Building Materials, 2021,24(1):207‑215. (in Chinese) [百度学术]
郑伍魁, 赵丹, 朱毅, 等. 陶粒工程应用的趋势分析及研究进展[J]. 材料导报, 2023, 37(7):102‑113. [百度学术]
ZHENG Wukui, ZHAO Dan, ZHU Yi, et al. Trend analysis and research progress of ceramsite engineering application[J]. Materials Reports, 2023,37(7):102‑113. (in Chinese) [百度学术]
赵洪, 谢友均, 龙广成, 等. 陶粒对SC‑SCC黏结界面的劈裂破坏特性的影响[J]. 建筑材料学报,2024,27(4):350‑358. [百度学术]
ZHAO Hong, XIE Youjun, LONG Guangcheng, et al. Effect of ceramsite on splitting failure characteristics of SC‑SCC bonding interface[J]. Journal of Building Materials,2024,27(4):350‑358 (in Chinese) [百度学术]
张磊, 张鸿飞, 荣辉, 等. 700~900密度等级渣土陶粒的研制及其性能[J]. 建筑材料学报, 2018, 21(5):803‑810. [百度学术]
ZHANG Lei, ZHANG Hong fei, RONG Hui, et al. Fabrication and performance of 700-900 density grade muck ceramsite[J]. Journal of Building Materials, 2018, 21(5):803‑810. (in Chinese) [百度学术]
LI P W, LUO S H, ZHANG L H, et al. Study on preparation and performance of iron tailings‑based porous ceramsite filter materials for water treatment[J]. Separation and Purification Technology, 2021, 276:119380. [百度学术]
GESOĞLU M, ÖZTURAN T, GÜNEYISI E. Effects of fly ash properties on characteristics of cold‑bonded fly ash lightweight aggregates[J]. Construction and Building Materials, 2007, 21(9):1869‑1878. [百度学术]
吴涛,杨雪,刘喜.钢-聚丙烯混杂纤维自密实轻骨料混凝土性能[J].建筑材料学报,2021,24(2):268‑275,282. [百度学术]
WU Tao, YANG Xue, LIU Xi. Properties of self‑compacting lightweight concrete reinforced with hybrid steel and polypropylene fibers[J]. Journal of Building Materials, 2021,24(2):268‑275,282. (in Chinese) [百度学术]
SHAO Y Y, SHAO Y Q, ZHANG W Y, et al Preparation of municipal solid waste incineration fly ash‑based ceramsite and its mechanisms of heavy metal immobilization[J]. Waste Management, 2022, 143:54‑60. [百度学术]
SHANG S, FAN H H, LI Y X, et al. Preparation of lightweight ceramsite from solid waste using SiC as a foaming agent[J]. Materials, 2022, 15(1):325. [百度学术]
刘明伟, 许国仁, 李圭白. Fe2O3对污泥与底泥制备轻质陶粒性能的影响[J]. 哈尔滨工业大学学报, 2012, 44(10):18‑21. [百度学术]
LIU Mingwei, XU Guoren, LI Guibai. Effect of Fe2O3 on the characteristics of lightweight aggregate made from sewage sludge and river sediment[J]. Journal of Harbin Institute of Technology, 2012, 44(10):18‑21. (in Chinese) [百度学术]