摘要
表面防护是提高混凝土耐久性的重要补充措施,然而传统表面防护存在界面相容性差和环境不友好等问题.近年来,利用微生物诱导碳酸钙沉积(MCIP)对混凝土进行表面覆膜防护的方案能有效突破传统表面防护方法的局限性,受到人们的广泛关注.本文从 应用于表面覆膜的MICP矿化机制出发,讨论了几种常见的表面覆膜方法及其对混凝土耐久性和力学性能的影响,分析了表面覆膜层的微观特性.最后,通过总结已有研究成果,对混凝土微生物表面覆膜的未来研究方向进行了讨论和展望.
混凝土结构的耐久性问题通常始于材料的劣化.虽然材料劣化在短期内不会立即产生安全问题,但长期势必会对混凝土的整体结构造成危
近20年来,籍由微生物成岩现象所受到的启发,利用微生物矿化效应所获得的生物材料已逐步受到人们的关注.自然界中的微生物可通过代谢作用形成无机矿化物,如碳酸盐、磷酸盐等,并进行胶结,从而填充具有渗透性的孔隙.微生物诱导碳酸钙沉积(MICP)为当前研究和应用的主流,其中细菌在适当的环境和底物条件下诱导产生CaCO3晶体沉
基于此,本文综述了近年来运用MICP技术进行混凝土表面覆膜防护的相关研究,分别讨论应用于表面覆膜的MICP矿化机制、工艺要点、防护效果及微观特性,在此基础上简要阐述混凝土MICP表面覆膜技术的未来研究方向与潜在应用前景.
文献表明,MICP技术所涵盖的菌种类别及相关矿化机制十分丰富.对于混凝土表面覆膜,目前MICP技术涉及的主要有脲酶催化型、有机碳氧化型及碳酸酐酶(CA)催化型这3种微生物矿化机制.
脲酶催化型微生物是最常见,应用也最为广泛的一类矿化菌.脲酶催化型矿化的作用机理为:首先,细菌产生脲酶(urease),催化尿素水解产生NH3与CO2;然后,NH3与CO2溶于水并形成NH
(1) |
(2) |
(3) |
(4) |
(5) |
(6) |
在矿化过程中,菌体常充当沉积的成核位点,促进MICP矿化.针对表面覆膜,近年来运用最多的细菌当属具有高脲酶活性的巴氏生孢八叠球菌(sporosarcina pasteurii
有机碳氧化型微生物一般采用嗜碱好氧性碳酸盐矿化菌,通过对有机碳的分解生成CO2.在碱性条件下,CO2与环境中的C
(7) |
有机碳氧化型矿化菌最常见的是科氏芽孢杆菌(bacillus cohnii
碳酸酐酶是一种以锌为活性中心的金属酶,其诱导CaCO3沉积的矿化机制是催化水中CO2的水解反
首先,气态CO2溶于水形成水合态CO2:
(8) |
随后,水合态CO2与水反应生成H2CO3:
(9) |
在水中,H2CO3电离生成
(10) |
在碱性条件下,HCO进一步电离生成CO和H2O:
(11) |
在C
(12) |
上述反应中影响CaCO3生成的限速步骤主要是CO2与水反应生成H2CO
(13) |
由于E∙ZnO
(14) |
然后E∙ZnHCO中的HCO离子被溶液中的水分子取代,生成E∙ZnOH2和HCO:
(15) |
迄今,仅有少量研究利用CA加速CaCO3沉积并应用于水泥石的表面覆膜处
为形成致密的生物CaCO3表面覆膜层,需要根据不同类型的微生物及营养物质情况采取合适的表面覆膜方法,目前主要开发了浸渍、涂刷和固载等方法.
浸渍法通过将样品以全方位浸泡或仅待处理面浸泡的方式与菌液、营养物及矿化组分接触,在需要覆膜的部位创建MICP矿化反应环境,从而产生CaCO3表面覆膜.De Muynck
由于菌液及营养物质供给充足,采用浸渍法产生的CaCO3沉积层较厚.但因为矿化主要靠重力作用形成,易导致矿化层质地疏松,黏结差,且样品表面与菌液附着力不足时也会影响CaCO3覆膜层的最终厚度及质量.另外,浸渍法在操作和矿化过程中液体组分易流失,工程适用性较差.
涂刷法通过借用工具涂刷或直接喷涂的方式,将覆膜所需的微生物及营养矿化物质附着在试块表面,以期形成CaCO3矿化层.郭红仙

图1 涂刷法工艺流程图
Fig.1 Flow chart of brushing metho
涂刷法操作简便,工程适用性强.然而,采用该法时营养物的供应量有限,因此总体防护效果一般.此外,涂刷法针对立面的表面处理工艺仍有待优化.
固载法是指利用具有负载特性的介质将MICP矿化覆膜所需组分包覆其中,随后涂敷在试块表面以获得稳定均匀的CaCO3覆膜层,其中负载介质多为含水凝胶类物质.琼脂作为半固体培养基的重要组分,常用作固载法的负载介质.Wang

图2 固载法MICP表面覆膜工艺
Fig.2 Surface coating with MICP by immobilization method
徐晶
除上述2种主要载体外,李娜
相比浸渍法和负载法,固载法的附着性好,具有很强的工程适用性.同时,载体介质能为菌株提供良好的环境,从而获得的CaCO3矿化层较厚且致密.当然,固载法操作步骤较为繁琐,且需要负载介质,提高了潜在的应用成本.
研究普遍认为,采用MICP矿化覆膜对混凝土进行表面处理后,所形成的致密薄膜有效改善了材料的耐久性,包括吸水性、抗水渗透性,抗氯离子渗透性和抗碳化性能.
由于水对混凝土劣化导致的耐久性问题至关重要,因此衡量混凝土表面处理后的吸水性能具有重要意义.目前来看,经MICP表面覆膜后混凝土的毛细吸水率下降10%~90%不等.De Muynck
在表面覆膜工艺方面,Wang
综上可见,经MICP表面覆膜后混凝土毛细吸水性能有所改善,其中钙源种类对吸水性能影响的显著度与菌株和固载材料均相关.浸渍法和固载法均能有效提供矿化所需的物质,而固载法不仅可为菌株提供良好的矿化环境,还具备更高的操作便利度,所获得的覆膜晶粒堆叠紧密,与基体表面黏结较好,有利于达到更低的吸水率及更好的防护效果.
混凝土的抗水渗透性是混凝土耐久性的基本特性,不仅代表混凝土在水压作用下抵抗水流透过的能力,更间接影响到混凝土耐腐蚀性能,因此高抗水渗透能力是评价表面处理的重要标准.徐晶
氯离子是影响混凝土结构长期耐久性,尤其是钢筋锈蚀的主要侵蚀性介质之一.因此,阻碍氯离子的进入与扩散是提高结构耐久性的有效途径.De Muynck
Nosouhian
在城市和工业区,环境污染及温室气体效应导致CO2浓度显著升高,由碳化引发的钢筋混凝土耐久性下降现象普遍存在.因此,有必要增强混凝土层的抗碳化性.De Muynck
李沛豪
Coating method | Mechanism | Strain type | Concentration of bacteria/(cell·m | Treatment time | Durability of concrete after treatment | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|
Water absorption | Water permeation resistance | Chloride permeation resistance | Carbonation resistance | |||||||
Immersing | Hydrolysis by urease | Sporosarcina pasteurii |
3.0×1 | 7 d | Decrease by 45% | Increase by 81% |
[ | |||
Bacillus sphaericus |
1 |
3 d immersing+ 7 d drying | Reduction related to water-cement ratio |
[ | ||||||
Bacillus subtilis |
4.9×1 | 28-210 d | Decrease by 12.14% | Increase by 12.51% |
[ | |||||
Organic carbon oxidation | Bacillus cohnii |
1 | 14 d | Decrease by 50% | Increase by 50% |
[ | ||||
Brushing | Hydrolysis by urease | Sporosarcina pasteurii |
3.0×1 | 7 d | Decrease by 55.7% | Increase by 10.5% |
[ | |||
1 | 48 h coating+7 d drying | Decrease by 58.0% |
[ | |||||||
2.0×1 | Brushing coatings till solidification |
Decrease by 60%-85% |
[ | |||||||
Immobilization | Agar | Hydrolysis by urease | Sporosarcina pasteurii |
3.0×1 | 7 d | Decrease by 35% |
[ | |||
3.0×1 | 7 d | Decrease by 35%/70% | Increase by 24% |
[ | ||||||
Diatomaceous earth | Hydrolysis by urease | Sporosarcina pasteurii |
1 | 48 h coating+7 d drying | Decrease by 58.0% |
[ | ||||
Sodium alginate | Hydrolysis by urease | Sporosarcina pasteurii |
5.0×1 | 7 d | Decrease by 75%-90% |
[ | ||||
2.0×1 | Immobilization till solidification | Decrease by 15% |
[ | |||||||
Agar | Hydrolysis by carbonic anhydrase | CA |
2.3×1 | 3 d brushing coatings+4 d drying | Decrease by 86% |
[ |
MICP表面覆膜对混凝土的强度一般没有显著影响.Mondal
MICP表面覆膜处理后,混凝土的表面成分、微观组织结构及形貌均会发生改变,这将对混凝土的各项性能产生显著影响.
MICP表面覆膜层厚度通常采用光学显微镜直接观测,如

图3 MICP表面覆膜层厚度的光学显微分析
Fig.3 Thickness of the MICP surface coating analyzed by optical microscop
在外观方面,De Muynck
针对MICP表面覆膜层的EDS成分分析普遍发现,沉积层的元素为Ca、C及O,因此可确认为CaCO
De Muynck
已有研究表明,覆膜工艺、钙源类型、C
在覆膜工艺方面,李娜

图4 不同MICP覆膜工艺形成的CaCO3形貌
Fig.4 Morphologies of CaCO3 formed by different MICP surface coating technique
王剑云

图5 海藻酸钠-菌复合层的荧光显微图
Fig.5 Fluorescence micrograph of alginate‑bacteria composite laye
在钙源类型方面,Xu

图6 基于乳酸钙和谷氨酸钙形成MICP矿化层的微观形貌
Fig.6 Micromorphology of MICP mineralized layer formed based on calcium lactate and calcium glutamat

图7 不同钙源生物矿化层SEM照片
Fig.7 SEM images of precipitated minerals from different calcium sourc
在C
目前,将MICP技术应用于混凝土防护及修复领域已有大量研究,混凝土的MICP表面覆膜技术具有绿色环保、可持续发展的特点,是科学可行的防护方法.本文分别从机理、工艺、性能及微观特性等方面,对MICP表面覆膜在混凝土中的研究和应用进行了梳理,目前仍有以下问题值得开展更深入的工作:
(1)碳酸酐酶催化型MICP能够加快对空气中CO2的捕捉和固化,是目前极具应用前景的一种微生物矿化途径.然而,将碳酸酐酶催化型MICP应用在混凝土表面覆膜方面的研究甚少,选择与之匹配的工艺是关键,同时亟需开展相应的微观机制研究.
(2)浸渍法和涂刷法无法灵活有效地应用于实际工程中.固载法效果良好,颇具潜力,但工艺复杂,成本较高.因此,仍需要探讨实际工程中覆膜工艺的选取和优化.
(3)当前在MICP表面覆膜的效果评价方面,更多关注的是覆膜后混凝土耐久性,包括吸水、抗水渗透、抗氯离子渗透和抗碳化性能,而在色度变化、矿化层与混凝土基体之间的黏结强度等方面鲜有关注,故混凝土表面覆膜层的物理化学特性及其与基体黏结强度仍有待进一步研究.
参考文献
PAN X, SHI Z, SHI C, et al. A review on concrete surface treatment Part I: Types and mechanisms[J]. Construction and Building Materials, 2017, 132:578‑590. [百度学术]
TITTARELLI F, MORICONI G. Comparison between surface and bulk hydrophobic treatment against corrosion of galvanized reinforcing steel in concrete[J]. Cement and Concrete Research, 2011, 41(6):609‑614. [百度学术]
ALMUSALLAM A A, KHAN F M, DULAIJAN S U, et al. Effectiveness of surface coatings in improving concrete durability[J]. Cement and Concrete Composites, 2003, 25(4/5):473‑481. [百度学术]
DIAMANTI M V, BRENNA A, BOLZONI F, et al. Effect of polymer modified cementitious coatings on water and chloride permeability in concrete[J]. Construction and Building Materials, 2013, 49:720‑728. [百度学术]
李化建,易忠来,谢永江.混凝土结构表面硅烷浸渍处理技术研究进展[J].材料导报, 2012, 26(2):120‑125. [百度学术]
LI Huajian, YI Zhonglai, XIE Yongjiang. Progress of silane impregnating surface treatment technology of concrete structure[J]. Materials Review, 2012, 26(2):120‑125. (in Chinese) [百度学术]
MCGETTIGAN E. Factors affecting the selection of water‑repellent treatments[J]. APT Bull, 1995, 26(4):22‑26. [百度学术]
DAI J G, AKIRA Y, WITTMANN F H, et al. Water repellent surface impregnation for extension of service life of reinforced concrete structures in marine environments:The role of cracks[J]. Cement and Concrete Composites, 2010, 32(2):101‑109. [百度学术]
WOO R S C, ZHU H G, CHOW M M K, et al. Barrier performance of silane‑clay nanocomposite coatings on concrete structure[J]. Composites Science and Technology, 2008, 68(14):2828‑2836. [百度学术]
CHUO S C, MOHAMED S F, SETAPAR S H M, et al. Insights into the current trends in the utilization of bacteria for microbially induced calcium carbonate precipitation[J]. Materials, 2020, 13(21):E4993. [百度学术]
SEIFAN M, BERENJIAN A. Microbially induced calcium carbonate precipitation:A widespread phenomenon in the biological world[J]. Applied Microbiology and Biotechnology, 2019, 103(12):4693‑4708. [百度学术]
SEIFAN M, SARABADANI Z, BERENJIAN A. Microbially induced calcium carbonate precipitation to design a new type of bio self‑healing dental composite[J]. Applied Microbiology and Biotechnology, 2020, 104(5):2029‑2037. [百度学术]
ZHU X J, WANG J Y, DE BELIE N, et al. Complementing urea hydrolysis and nitrate reduction for improved microbially induced calcium carbonate precipitation[J]. Applied Microbiology and Biotechnology, 2019, 103(21/22):8825‑8838. [百度学术]
HODGES T M, LINGWALL B N. Case histories of full‑scale microbial bio‑cement application for surface erosion control proceedings of the geo‑congress on biogeotechnics[C]//Geo‑Congress on Biogeotechnics. Minneapolis:Biogeotechnics, 2020:9‑19. [百度学术]
AL‑SALLOUM Y, HADI S, ABBAS H, et al. Bio‑induction and bioremediation of cementitious composites using microbial mineral precipitation—A review[J]. Construction and Building Materials, 2017, 154:857‑876. [百度学术]
VIJAY K, MURMU M, DEO S V. Bacteria based self healing concrete—A review[J]. Construction and Building Materials, 2017, 152:1008‑1014. [百度学术]
MUGWAR A J, HARBOTTLE M J. Toxicity effects on metal sequestration by microbially‑induced carbonate precipitation[J]. Journal of Hazardous Materials, 2016, 314:237‑248. [百度学术]
YAQOOB A A, PARVEEN T, UMAR K, et al. Role of nanomaterials in the treatment of wastewater:A review[J]. Water, 2020, 12(2):495. [百度学术]
ORTEGA‑VILLAMAGUA E, GUDIÑO‑GOMEZJURADO M, PALMA‑CANDO A. Microbiologically induced carbonate precipitation in the restoration and conservation of cultural heritage materials[J]. Molecules, 2020, 25(23):E5499. [百度学术]
QIAN C X, ZHENG T W, ZHANG X, et al. Application of microbial self‑healing concrete:Case study[J]. Construction and Building Materials, 2021, 290:123226. [百度学术]
DE MUYNCK W, DE BELIE N, VERSTRAETE W. Microbial carbonate precipitation in construction materials:A review[J]. Ecological Engineering, 2010, 36(2):118‑136. [百度学术]
ZHANG D, SHAHIN M A, YANG Y, et al. Effect of microbially induced calcite precipitation treatment on the bonding properties of steel fiber in ultra‑high performance concrete[J]. Journal of Building Engineering, 2022, 50:104132. [百度学术]
MI T W, PENG L G, YU K Q, et al. Enhancement strategies for recycled brick aggregate concrete using MICP and EICP treatments[J]. Journal of Building Engineering, 2023, 79:107909. [百度学术]
SERRANO‑GONZÁLEZ L, MERINO‑MALDONADO D, GUERRA‑ROMERO M I, et al. Use of mixed microbial cultures to protect recycled concrete surfaces:A preliminary study[J]. Materials, 2021, 14(21):6545. [百度学术]
DE MUYNCK W, COX K, DE BELLE N, et al. Bacterial carbonate precipitation as an alternative surface treatment for concrete[J]. Construction and Building Materials, 2008, 22(5):875‑885. [百度学术]
郭红仙, 张越, 程晓辉, 等. 微生物诱导碳酸钙技术用于水泥基材料裂缝修复和表面覆膜[J]. 工业建筑, 2015, 45(7):36‑41, 53. [百度学术]
GUO Hongxian, ZHANG Yue, CHENG Xiaohui, et al. Microbial induced calcium carbonate technology for crack repair and surface cladding of cementitious materials[J]. Industrial Construction, 2015, 45(7):36‑41, 53. (in Chinese) [百度学术]
徐晶, 王先志. 浸渍及固载法用于混凝土微生物表面处理对比研究[J]. 材料导报, 2018, 32(24):4276‑4280. [百度学术]
XU Jing, WANG Xianzhi. Comparative study of impregnation and solid‑loading methods for microbial surface treatment of concrete[J]. Materials Review, 2018, 32(24):4276‑4280. (in Chinese) [百度学术]
徐晶, 王先志. 碳化作用下混凝土的微生物表面处理[J]. 同济大学学报(自然科学版), 2019, 47(2):228‑233. [百度学术]
XU Jing, WANG Xianzhi. Microbial surface treatment of concrete under carbonation[J]. Journal of Tongji University(Natural Science), 2019, 47(2):228‑233. (in Chinese) [百度学术]
王剑云, 钱春香, 王瑞兴, 等. 海藻酸钠固载菌株在水泥基材料表面防护中的应用研究[J]. 功能材料, 2009, 40(2):348‑351. [百度学术]
WANG Jianyun, QIAN Chunxiang, WANG Ruixing, et al. Study on the application of sodium alginate‑solidified bacterial strains in surface protection of cementitious materials[J]. Journal of Functional Materials, 2009, 40(2):348‑351. (in Chinese) [百度学术]
QIAN C X, WANG J Y, WANG R X, et al. Corrosion protection of cement‑based building materials by surface deposition of CaCO3 by Bacillus pasteurii[J]. Materials Science and Engineering C, 2009, 29(4):1273‑1280. [百度学术]
刘士雨, 俞缙, 韩亮, 等. 三合土表面微生物诱导碳酸钙沉淀耐水性试验研究[J]. 岩石力学与工程学报, 2019, 38(8):1718‑1728. [百度学术]
LIU Shiyu, YU Jin, HAN Liang, et al. Experimental study on water resistance of microbial induced calcium carbonate precipitation on triclase surface[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(8):1718‑1728. (in Chinese) [百度学术]
LIU S Y, WANG R K, YU J, et al. Effectiveness of the anti‑erosion of an MICP coating on the surfaces of ancient clay roof tiles[J]. Construction and Building Materials, 2020, 243:118202. [百度学术]
李沛豪, 屈文俊. 细菌诱导碳酸钙矿化材料及其应用前景[J]. 建筑材料学报, 2009, 12(4):482‑486. [百度学术]
LI Peihao, QU Wenjun. Bacteria‑induced calcium carbonate mineralization material and its application prospect[J]. Journal of Building Materials, 2009, 12(4):482‑486. (in Chinese) [百度学术]
朱飞龙, 李庚英, 杜虹, 等. 一种基于微生物沉积的水泥砂浆表面改性技术[J]. 功能材料, 2013, 44(5):700‑703, 708. [百度学术]
ZHU Feilong, LI Gengying, DU Hong, et al. A microbial deposition‑based surface modification technology for cement mortar[J]. Journal of Functional Materials, 2013, 44(5):700‑703, 708. (in Chinese) [百度学术]
NOSOUHIAN F, MOSTOFINEJAD D, HASHEMINEJAD H. Influence of biodeposition treatment on concrete durability in a sulphate environment[J]. Biosystems Engineering, 2015, 133:141‑152. [百度学术]
XU J, WANG X Z, YAO W. Coupled effects of carbonation and bio‑deposition in concrete surface treatment[J]. Cement and Concrete Composites, 2019, 104:103358. [百度学术]
王剑云, 钱春香, 王瑞兴, 等. 菌液浸泡法在水泥基材料表面覆膜研究[J]. 硅酸盐学报, 2009, 37(7):1097‑1102. [百度学术]
WANG Jianyun, QIAN Chunxiang, WANG Ruixing, et al. Research on surface coating of cementitious materials by bacterial liquid immersion method[J]. Journal of the Chinese Ceramic Society, 2009, 37(7):1097‑1102. (in Chinese) [百度学术]
王瑞兴, 钱春香. 微生物沉积碳酸钙修复水泥基材料表面缺陷[J]. 硅酸盐学报, 2008, 36(4):457‑464. [百度学术]
WANG Ruixing, QIAN Chunxiang. Microbial deposition of calcium carbonate for repairing surface defects of cementitious materials[J]. Journal of the Chinese Ceramic Society, 2008, 36(4):457‑464. (in Chinese) [百度学术]
王瑞兴, 钱春香. 琼脂固载微生物矿化修复水泥基材料表面缺陷[J]. 建筑材料学报, 2013, 16(6):942‑948. [百度学术]
WANG Ruixing, QIAN Chunxiang. Agar‑solidified microbial mineralization for repairing surface defects of cementitious materials[J]. Journal of Building Materials, 2013, 16(6):942‑948. (in Chinese) [百度学术]
王瑞兴, 钱春香, 王剑云, 等. 水泥石表面微生物沉积碳酸钙覆膜的不同工艺[J]. 硅酸盐学报, 2008, 36(10):1378‑1384. [百度学术]
WANG Ruixing, QIAN Chunxiang, WANG Jianyun, et al. Different processes for microbial deposition of calcium carbonate overlay on cementite surfaces[J]. Journal of the Chinese Ceramic Society, 2008, 36(10):1378‑1384. (in Chinese) [百度学术]
WANG R X, QIAN C X, WANG J Y. Bio‑deposition of a calcite layer on cement‑based materials by brushing with agar‑immobilised bacteria[J]. Advances in Cement Research, 2011, 23(4):185‑192. [百度学术]
SEIFAN M, SAMANI A K, BERENJIAN A. Bioconcrete:Next generation of self‑healing concrete[J]. Applied Microbiology and Biotechnology, 2016, 100(6):2591‑2602. [百度学术]
XU J, YAO W, JIANG Z W. Non‑ureolytic bacterial carbonate precipitation as a surface treatment strategy on cementitious materials[J]. Journal of Materials in Civil Engineering, 2014, 26(5):983‑991. [百度学术]
DE MUYNCK W, DEBROUWER D, DE BELIE N, et al. Bacterial carbonate precipitation improves the durability of cementitious materials[J]. Cement and Concrete Research, 2008, 38(7):1005‑1014. [百度学术]
ZHENG T W, QIAN C X. Influencing factors and formation mechanism of CaCO3 precipitation induced by microbial carbonic anhydrase[J]. Process Biochemistry, 2020, 91:271‑281. [百度学术]
FARIDI S, SATYANARAYANA T. Novel alkalistable α‑carbonic anhydrase from the polyextremophilic bacterium Bacillus halodurans:Characteristics and applicability in flue gas CO2 sequestration[J]. Environmental Science and Pollution Research, 2016, 23(15):15236‑15249. [百度学术]
任立夫, 钱春香. 碳酸酐酶微生物沉积碳酸钙修复水泥基材料表面裂缝[J]. 硅酸盐学报, 2014, 42(11):1389‑1395. [百度学术]
REN Lifu, QIAN Chunxiang. Microbial deposition of calcium carbonate by carbonic anhydrase for repairing surface cracks of cementitious materials[J]. Journal of the Chinese Ceramic Society, 2014, 42(11):1389‑1395. (in Chinese) [百度学术]
李娜, 王丽娟, 李凯, 等. 基于微生物成因的混凝土缺陷修复技术研究[J]. 水利与建筑工程学报, 2017, 15(5):163‑166. [百度学术]
LI Na, WANG Lijuan, LI Kai, et al. Research on repair technology of concrete defects based on microbial genesis[J]. Journal of Water Resources and Architectural Engineering, 2017, 15(5):163‑166. (in Chinese) [百度学术]
李翔, 梁仕华. 利用微生物诱导碳酸钙沉淀技术修复混凝土表面缺陷的研究[J]. 安徽建筑, 2017, 24(4):252‑254. [百度学术]
LI Xiang, LIANG Shihua. Study on repairing concrete surface defects using microbe‑induced calcium carbonate precipitation technology[J]. Anhui Architecture, 2017, 24(4):252‑254. (in Chinese) [百度学术]
BASHEER P A M, BASHEER L, CLELAND D J, et al. Surface treatments for concrete:Assessment methods and reported performance[J]. Construction and Building Materials, 1997, 11(7/8):413‑429. [百度学术]
MONDAL S, GHOSH A. Investigation into the optimal bacterial concentration for compressive strength enhancement of microbial concrete[J]. Construction and Building Materials, 2018, 183:202‑214. [百度学术]
ÖZHAN H B, YILDIRIM M, ÖGÜT H, et al. Repair of cracks in concrete with the microbial‑induced calcite precipitation(MICP) method[J]. Slovak Journal of Civil Engineering, 2023, 31(4):1‑8. [百度学术]