摘要
以混凝土结构中钢筋锈蚀特征的漏磁探测技术为主线,对相关研究进行综合回顾与分析.结果表明,基于漏磁探测技术能够准确识别混凝土结构中钢筋的锈蚀区域并定量评估钢筋锈蚀率.为进一步提升利用漏磁技术探测既有钢筋混凝土结构锈蚀特征的适用性和准确性,未来还需要充分考虑磁化强度随机分布引起的锈蚀率评估结果的概率分布特性,明确应力、疲劳、箍筋/相邻纵筋、锈蚀产物和混凝土的影响,推动基于漏磁成像的计算机视觉自动识别和融合多指标、多技术方法的应用.
混凝土结构广泛应用于桥梁、建筑和隧道等基础设
受相对湿度、含氧量和材料特性等影响,混凝土结构中的锈蚀过程随机性很
本文对基于漏磁法探测钢筋锈蚀研究的丰富成果进行整体回顾,以期发现关键问题,明确未来研究重点.
钢筋漏磁原理通常被描述为“铁磁构件被磁化后其内部会产生磁场,若构件上存在锈蚀等缺陷,磁场会泄漏到构件外部并形成漏磁
钢筋锈蚀可分为局部锈蚀和整体锈蚀.

图1 钢筋局部锈蚀的漏磁特征
Fig.1 MFL characteristics of rebar’s local corrosion
钢筋的整体锈蚀具有复杂的不均匀锈蚀形态,常用有限元仿真求解漏磁数值. 整体锈蚀钢筋的漏磁场变化包括两部分:一是截面积缩减造成的漏磁强度整体降低,二是不均匀锈蚀引起的漏磁场局部波
确定钢筋锈蚀的位置和宽度后,需要确定的是钢筋锈蚀率η. 大量理论和实践证明,钢筋锈蚀漏磁变幅Am随着锈蚀深度d或η的增加而单调增加. 基于此,研究发现Am与η线性相

图2 钢筋锈蚀漏磁变幅(归一化漏磁变幅)与锈蚀率的典型线性关系及其线性增长速率
Fig.2 Typical linear relationships between MFL variation amplitude(normalized MFL variation amplitude
如上所述,钢筋锈蚀漏磁变幅Am本质上取决于锈蚀率η和磁化强度M. 为了基于Am来定量评估钢筋的η,须消除钢筋在磁化强度M上的差异,以便将“一个方程,两个未知数”的非唯一解问题转化为“一个方程,一个未知数”的唯一解问题. 目前,基于钢筋感应磁场强度HI和自发漏磁场强度HS的“动态联动机制”,已经发展出一种针对钢筋局部锈蚀率η的无损量化评估方
(1) |
(2) |
式中:x, y, z为空间坐标;w为1/2局部锈蚀宽度,mm;为真空磁导率,H/mm;l为1/2钢筋长度,mm;r为钢筋半径,mm.
研究发现,在HS和HI某一分量的曲线上分别取幅值、梯度或均值等简单几何参数T1和T2,将两者进行比值处理后得到量化指标I,其表达
(3) |
由

图3 漏磁量化处理和钢筋锈蚀率分级评估结果
Fig.3 Quantification of MFL and classification of rebar corrosion degree
由
由
这种基于概率的方法可以合理考虑钢筋在非理想纵向磁化状态下引起的评估误差,相似研究汇总于
Resource | Index | Assessment method | Assessment accuracy |
---|---|---|---|
Ref.[ | Quantitative KG | Bayesian model | 56.8%-97.4% |
Ref.[ | Quantitative Kc | Bayesian model | 65.0%-95.7% |
Ref.[ |
Non‑quantitative β, quantitative γ |
Bayesian model SVM | 57.1%-100.0% of single index,85.7%-100.0% of double indices,and the classification accuracy of SVM exceeds 90.0% |
Ref.[ |
Non‑quantitative β, quantitative γ | Bayesian model | 56.6%-100.0% of single index,83.3%-100.0% of double indices |
Ref.[ |
Non‑quantitative M1,M3, M4;quantitative M2 | SVM | The classification accuracy of SVM is 77.7% |
Ref.[ |
Quantitative K, rusty spot area S | Bayesian model | 70.0% of only K,82.5% of K&S |
Ref.[ | Peak,peak‑valley spacing | BP neural network | 9.5% |
Note: SVM is support vector machine.
上述结果表明,利用漏磁技术对钢筋锈蚀率η进行探测和评估具有很好的应用潜力. 但目前,不同研究中构造的量化指标并不统一,如何选定一个最优指标或者指标组合值需要进一步研究. 此外,针对

图4 基于锈胀裂缝宽度的混凝土锈蚀梁抗弯承载力概率分布估计
Fig.4 Probability distribution estimation of flexural capacity of corrooded RC beam based on corrosion crack width
由于现有各种量化指标通常使用无外加荷载裸钢筋、外包混凝土试件和矩形截面梁的漏磁数据,无法全面考虑钢筋应力、疲劳损伤、箍筋/相邻纵筋漏磁干扰、锈蚀产物和混凝土的影响.对于铁磁性材料,理论上已证明应力变化会使其磁化强度M出现非线性变

图5 应力、疲劳、箍筋/相邻纵筋、锈蚀产物和混凝土对锈蚀钢筋漏磁的影响
Fig.5 Effects of stress,fatigue,stirrups/adjacent steel bars,rust products,and concrete on MFL of corroded rebar
由
由
由
外部探测到的钢筋漏磁场强度与相邻纵筋μ0密切相
综上所述,一旦相关研究得以完善,即可根据

图6 建议的钢筋锈蚀特征漏磁探测评估流程
Fig.6 Proposed process for MFL‑based detection and assessment of rebar’s corrosion characteristics
(1)应当考虑钢筋随机磁化分布引起的钢筋锈蚀率量化评估结果的随机性,发展基于概率的钢筋锈蚀率定量评估方法.
(2)明确应力、疲劳、锈蚀箍筋/相邻纵筋和锈蚀产物的影响.
(3)基于漏磁成像和计算机视觉能够自动识别锈蚀位置和锈蚀率.
(4)将多指标或多技术进行融合,以进一步提升钢筋锈蚀率评估精度.
参考文献
高玉军, 邓翀, 秦明强, 等. 铁路隧道C30早高强喷射混凝土试验研究与应用[J]. 建筑材料学报, 2023, 26(9):1011‑1022. [百度学术]
GAO Yujun, DENG Chong, QIN Mingqiang. Experimental research and application of C30 early and high‑strength shotcrete in railway tunnel[J]. Journal of Building Materials, 2023, 26(9):1011‑1022. (in Chinese) [百度学术]
王之龙, 刘伊生, 邵高峰. 基于普查数据的我国城市建筑物质存量动态演化研究[J]. 建筑科学, 2020, 36(增刊2):339‑344. [百度学术]
WANG Zhilong, LIU Yisheng, SHAO Gaofeng. Research on the dynamic evolution of building stock in China[J]. Building Science, 2020, 36(Suppl 2):339‑344. (in Chinese) [百度学术]
JIANG C, GU X L, HUANG Q H, et al. Carbonation depth predictions in concrete bridges under changing climate conditions and increasing traffic loads[J]. Cement and Concrete Composites, 2018, 93:140‑154. [百度学术]
JIANG C, SONG C, GU X L, et al. Modeling electrochemical chloride extraction process in cement‑based materials considering coupled multi‑ion transports and thermodynamic equilibriums[J]. Journal of Cleaner Production, 2023, 401:136778. [百度学术]
QIU J L, ZHANG H, ZHOU J T, et al. Experimental analysis of the correlation between bending strength and SMFL of corroded RC beams[J]. Construction and Building Materials, 2019, 214:594‑605. [百度学术]
ZHANG W P, QIU J L, ZHAO C L, et al. Structural performance of corroded precast concrete tunnel lining[J]. Tunnelling and Underground Space Technology, 2022, 128:104658. [百度学术]
GU X L, GUO H Y, ZHOU B B, et al. Corrosion non‑uniformity of steel bars and reliability of corroded RC beams[J]. Engineering Structures, 2018, 167:188‑202. [百度学术]
孙佳, 金祖权, 秦一琦. 钢筋非均匀锈蚀与混凝土开裂试验及数值模拟[J]. 建筑材料学报, 2024, 27(4):309‑319. [百度学术]
SUN Jia, JIN Zuquan, QIN Yiqi. Experimental and numerical simulation on non‑uniform corrosion of steel bar and concrete cracking[J]. Journal of Building Materials, 2024, 27(4):309‑319. (in Chinese) [百度学术]
尚明刚, 张云升, 何忠茂, 等. 盐渍土环境下钢筋混凝土恒电流加速锈蚀试验及可靠性分析[J]. 建筑材料学报, 2022, 25(7):751‑759. [百度学术]
SHANG Minggang, ZHANG Yunsheng, HE Zhongmao, et al. Constant current accelerated corrosion test and reliability analysis of reinforced concrete in saline soil environment[J]. Journal of Building Materials, 2022, 25(7):751‑759. (in Chinese) [百度学术]
RAUPACH M. Models for the propagation phase of reinforcement corrosion—An overview[J]. Materials and Corrosion, 2006, 57(8):605‑613. [百度学术]
YU Y G, GAO W, CASTEL A, et al. Modelling steel corrosion under concrete non‑uniformity and structural defects[J]. Cement and Concrete Research, 2020, 135:106109. [百度学术]
BUI H T, MAEKAWA K, TAN K H. Microcell and macrocell corrosion of steel bars in reinforced concrete slabs under different corrosive environments and cathode/anode configurations[J]. Cement and Concrete Composites, 2023, 138:104989. [百度学术]
RODULFO P, WANG B Y, GUPTA R, et al. Relationship between electrical conductivity, half cell potential, linear polarization resistance and macrocell current of cementitious repair materials[J]. Construction and Building Materials, 2023, 401:132733. [百度学术]
ZHANG L, NIU D T, WEN B, et al. Initial‑corrosion condition behavior of the Cr and Al alloy steel bars in coral concrete for marine construction[J]. Cement and Concrete Composites, 2021, 120:104051. [百度学术]
YU A P, NAQVI M W, HU L B, et al. An experimental study of corrosion damage distribution of steel bars in reinforced concrete using acoustic emission technique[J]. Construction and Building Materials, 2020, 254:119256. [百度学术]
FAN L, TAN X, ZHANG Q H, et al. Monitoring corrosion of steel bars in reinforced concrete based on helix strains measured from a distributed fiber optic sensor[J]. Engineering Structures, 2020, 204:110039. [百度学术]
SOLLA M, LAGÜELA S, FERNÁNDEZ N, et al. Assessing rebar corrosion through the combination of nondestructive GPR and IRT methodologies[J]. Remote Sensing, 2019, 11(14):1705. [百度学术]
ZHANG M Y, AKIYAMA M, SHINTANI M, et al. Probabilistic estimation of flexural loading capacity of existing RC structures based on observational corrosion‑induced crack width distribution using machine learning[J]. Structural Safety, 2021, 91:102098. [百度学术]
全国无损检测标准化技术委员会. 无损检测 漏磁检测 总则:GB/T 31212—2014 [S]. 北京:中国标准出版社, 2015. [百度学术]
National Technical Committee 56 on Non‑destructive testing of standardization Administration of China. Non‑destructive testing―Magnetic flux leakage testing―General principles:GB/T 31212—2014[S]. Beijing:Standards Press of China, 2015. (in Chinese) [百度学术]
叶华睿. 电力基础设施钢筋砼中钢筋锈蚀的磁感应检测方法与实验研究[D]. 重庆:重庆大学, 2022. [百度学术]
YE Huarui. Magnetic induction detection method and experimental study of rebar corrosion in reinforced concrete of power infrastructure [D]. Chongqing:Chongqing University, 2022. (in Chinese) [百度学术]
GHORBANPOOR A, SHI S. Assessment of corrosion of steel in concrete structures by magnetic based NDE techniques[C]// Proceeding of the 1994 Symposium on Techniques to Access the Corrosion Activity of Steel Reinforced Concrote. Philadelphia:ASTM International, 1996:117‑131. [百度学术]
ZHOU J T, QIU J L, ZHOU Y X, et al. Experimental study on residual bending strength of corroded reinforced concrete beam based on micromagnetic sensor[J]. Sensors, 2018, 18(8):2635. [百度学术]
SHAMS S, GHORBANPOOR A, LIN S, et al. Nondestructive testing of steel corrosion in prestressed concrete structures using the magnetic flux leakage system[J]. Transportation Research Record, 2018, 2672(41):132‑144. [百度学术]
YE H R, ZHANG Z L, DAN Y H, et al. Novel method for measurement of rebar state of cement tower[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70:1‑8. [百度学术]
杨茂, 周建庭, 张洪, 等. 混凝土内部钢筋锈蚀的磁记忆检测[J]. 建筑材料学报, 2018,21(2):345‑350. [百度学术]
YANG Mao, ZHOU Jianting, ZHANG Hong, et al. Magnetic memory detection of rebar corrosion in concrete[J]. Journal of Building Materials, 2018, 21(2):345‑350. (in Chinese) [百度学术]
周建庭, 张森华, 张洪, 等. 混凝土内锈蚀钢筋的漏磁信号分析[J]. 江苏大学学报(自然科学版), 2019, 40(3):355‑359. [百度学术]
ZHOU Jianting, ZHANG Senhua, ZHANG Hong, et al. Magnetic flux leakage signal analysis of corroded reinforcing bar in concrete[J]. Journal of Jiangsu University(Natural Science Edition), 2019, 40(3):355‑359. (in Chinese) [百度学术]
张爽. 基于磁记忆效应的RC梁内部钢筋损伤检测研究[D]. 济南:鲁东大学, 2019. [百度学术]
ZHANG Shuang. Research on internal reinforcement damage detection of RC beam based on magnetic memory effect[D]. Jinan:Ludong University, 2019. (in Chinese) [百度学术]
张元恒. 基于金属磁记忆的钢筋混凝土结构锈蚀度检测技术研究[D]. 重庆:重庆交通大学, 2020. [百度学术]
ZHANG Yuanheng. Research on corrosion degree detection technology of reinforced concrete structure based on metal magnetic memory[D]. Chongqing:Chongqing Jiaotong University, 2020. (in Chinese) [百度学术]
赵亚宇. 基于金属磁记忆漏磁特性的钢绞线锈蚀度检测试验研究[D]. 重庆:重庆交通大学, 2021. [百度学术]
ZHAO Yayu. Experimental research on corrosion degree detection of steel strand based on magnetic flux leakage characteristics of metal magnetic memory [D]. Chongqing:Chongqing Jiaotong University, 2021. (in Chinese) [百度学术]
周建庭, 夏乾文, 杨茂, 等. 基于自发漏磁效应的钢筋锈蚀分级评估研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(10):93‑99. [百度学术]
ZHOU Jianting, XIA Qianwen, YANG Mao, et al. Grading assessment of steel corrosion based on spontaneous magnetic flux leakage effect [J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(10):93‑99. (in Chinese) [百度学术]
邱俊澧, 周建庭, 廖棱, 等. 锈蚀钢筋混凝土梁受弯承载力与自发漏磁相关性试验研究[J]. 建筑结构学报, 2020, 41(9):127‑136. [百度学术]
QIU Junli, ZHOU Jianting, LIAO Leng, et al. Experimental study on correlation between bending capacity and self‑magnetic flux leakage of corroded RC beams [J]. Journal of Building Structures, 2020, 41(9):127‑136. (in Chinese) [百度学术]
AZARI H, GHORBANPOOR A, SHAMS S. Development of robotic nondestructive testing of steel corrosion of prestressed concrete bridge girders using magnetic flux leakage system[J]. Transportation Research Record, 2020, 2674(8):466‑476. [百度学术]
SUN Y H, LIU S W, DENG Z Y, et al. Magnetic flux leakage structural health monitoring of concrete rebar using an open electromagnetic excitation technique[J]. Structural Health Monitoring, 2018, 17(2):121‑134. [百度学术]
LO C C H, NAKAGAWA N. Evaluation of eddy current and magnetic techniques for inspecting rebars in bridge barrier rails[C]// AIP Conference Proceedings. Colorado:American Institute of Physics, 2013, 1511(1):1371‑1377. [百度学术]
ZHANG H, MA X T, JIANG H J, et al. Grading evaluation of overall corrosion degree of corroded RC beams via SMFL technique[J]. Structural Control and Health Monitoring, 2023, 2023:672823. [百度学术]
CHEN L, LIU X L, LIN Y F, et al. Quantitative corrosion detection of reinforced concrete based on self‑magnetic flux leakage and rust spot area[J]. Engineering Research Express, 2022, 4(3):035063. [百度学术]
XIA R C, ZHANG H, ZHOU J T, et al. Corrosion non‑destructive testing of loaded steel strand based on self‑magnetic flux leakage effect[J]. Nondestructive Testing and Evaluation, 2022, 37(1):56‑70. [百度学术]
DIEDERICH H, VOGEL T. Evaluation of reinforcing bars using the magnetic flux leakage method[J]. Journal of Infrastructure Systems, 2017, 23(1):B4016001. [百度学术]
ELYASIGORJI A, REZAEE M, GHORBANPOOR A. Characterization of corrosion in PS concrete girders by correlation analysis[C]// Structures Congress 2020. Reston:American Society of Civil Engineers, 2020:285‑292. [百度学术]
BEKTAŞ Ö, KURBAN Y C, ÖZBOYLAN B. Development of magnetic flux leakage device as a nondestructive method for structural reinforcement detection[J]. Materiales de Construcción, 2022, 72(345):02421. [百度学术]
MAHBAZ S B, DUSSEAULT M B, CASCANTE G, et al. Detecting defects in steel reinforcement using the passive magnetic inspection method[J]. Journal of Environmental & Engineering Geophysics, 2017, 22(2):153‑166. [百度学术]
MIETZ J, FISCHER J. Evaluation of NDT methods for detection of prestressing steel damage at post‑tensioned concrete structures[J]. Materials and Corrosion, 2007, 58(10):789‑794. [百度学术]
QU Y H, ZHANG H, ZHAO R Q, et al. Research on the method of predicting corrosion width of cables based on the spontaneous magnetic flux leakage[J]. Materials, 2019, 12(13):2154. [百度学术]
ZHAO Q Y, ZHOU J T, XIA Q W, et al. Non‑destructive testing of steel corrosion fluctuation parameters based on spontaneous magnetic flux leakage and its relationship with steel bar diameter[J]. Materials, 2019, 12(24):4116. [百度学术]
ZHANG H, ZHOU J T, ZHAO R Q, et al. Experimental study on detection of rebar corrosion in concrete based on metal magnetic memory[J]. International Journal of Robotics & Automation, 2017, 32:530‑537. [百度学术]
FERNANDES B, TITUS M, NIMS D K, et al. Practical assessment of magnetic methods for corrosion detection in an adjacent precast, prestressed concrete box‑beam bridge[J]. Nondestructive Testing and Evaluation, 2013, 28(2):99‑118. [百度学术]
XIA R C, ZHOU J T, ZHANG H, et al. Experimental study on corrosion of unstressed steel strand based on metal magnetic memory[J]. KSCE Journal of Civil Engineering, 2019, 23:1320‑1329. [百度学术]
YANG M, ZHOU J T, ZHAO Q Y, et al. Quantitative detection of corroded reinforced concrete of different sizes based on SMFL[J]. KSCE Journal of Civil Engineering, 2022, 26(1):143‑154. [百度学术]
FERNANDES B, NIMS D, DEVABHAKTUNI V. Comprehensive MMF‑MFL inspection for corrosion detection and estimation in embedded prestressing strands[J]. Journal of Civil Structural Health Monitoring, 2014, 4:43‑55. [百度学术]
LI B A, LI S D, ZHANG G Z, et al. Grading assessment of steel bar corrosion in concrete structures based on naive Bayesian model and spontaneous magnetic flux leakage effect[J]. Journal of Engineering and Applied Science, 2023, 70(1):3. [百度学术]
ZHANG H, LIAO L, ZHAO R Q, et al. The non‑destructive test of steel corrosion in reinforced concrete bridges using a micro‑magnetic sensor[J]. Sensors, 2016, 16(9):1439. [百度学术]
XIA R C, ZHOU J T, ZHANG H, et al. Quantitative study on corrosion of steel strands based on self‑magnetic flux leakage[J]. Sensors, 2018, 18(5):1396. [百度学术]
YANG D, QIU J L, DI H B, et al. Quantitative evaluation of corrosion degrees of steel bars based on self‑magnetic flux leakage[J]. Metals, 2019, 9(9):952. [百度学术]
MOSHARAFI M, MAHBAZ S B, DUSSEAULT M B. Simulation of real defect geometry and its detection using passive magnetic inspection (PMI) method[J]. Applied Sciences, 2018, 8(7):1147. [百度学术]
MOSHARAFI M, MAHBAZ S B, DUSSEAULT M B, et al. Magnetic detection of corroded steel rebar:Reality and simulations[J]. NDT & E International, 2020, 110:102225. [百度学术]
QIU J L, ZHANG W P, JING Y. Quantitative linear correlation between self‑magnetic flux leakage field variation and corrosion unevenness of corroded rebars[J]. Measurement, 2023, 118:113173. [百度学术]
李贤康. 基于磁场理论的钢筋锈蚀监测仪的工作机理与研发[D]. 杭州:浙江大学, 2021. [百度学术]
LEI Xiankang. Working mechanism and R&D of reinforcement corrosion monitor based on magnetic field theory [D]. Hangzhou:Zhejiang University, 2021. (in Chinese) [百度学术]
LEI I, JIN X Y, TIAN Y, et al. Numerical simulation of a magnetic corrosion detector for corrosion detection of steel rebar in concrete[J]. Journal of Civil Structural Health Monitoring, 2022, 12:1‑14. [百度学术]
吴昱劼. 基于磁场梯度张量的桥梁索结构腐蚀损伤测试方法研究[D]. 重庆:重庆交通大学, 2020. [百度学术]
WU Yujie. Research on corrosion damage testing method of bridge cable structure based on magnetic field gradient tensor [D]. Chongqing:Chongqing Jiaotong University, 2020. (in Chinese) [百度学术]
吉祥, 周建庭, 张洪, 等. 基于金属磁记忆的钢筋混凝土结构锈蚀检测[J]. 混凝土, 2019(6):151‑155. [百度学术]
JI Xiang, ZHOU Jianting, ZHANG Hong, et al. Corrosion detection of reinforced concrete structures based on metal magnetic memory[J]. Concrete, 2019(6):151‑155. (in Chinese) [百度学术]
张凯. 基于弱磁效应腐蚀钢筋混凝土结构疲劳裂纹扩展行为研究[D]. 杭州:浙江大学, 2023. [百度学术]
ZHANG Kai. Study on fatigue crack growth behavior of corroded reinforced concrete structure on weak magnetic effect [D]. Hangzhou:Zhejiang University, 2023. (in Chinese) [百度学术]
FU C Q, HUANG J H, DONG Z, et al. Experimental and numerical study of an electromagnetic sensor for non‑destructive evaluation of steel corrosion in concrete[J]. Sensors and Actuators A:Physical, 2020, 315:112371. [百度学术]
ZHANG J R, LIU C, SUN M, et al. An innovative corrosion evaluation technique for reinforced concrete structures using magnetic sensors[J]. Construction and Building Materials, 2017, 135:68‑75. [百度学术]
MOSHARAFI M, MAHBAZ S B, DUSSEAULT M B. Statistical methods to assess the reliability of magnetic data recorded over steel corrosion sites[J]. Construction and Building Materials, 2020, 264:120260. [百度学术]
LI Z, JIN Z Q, GAO Y, et al. Coupled application of innovative electromagnetic sensors and digital image correlation technique to monitor corrosion process of reinforced bars in concrete[J]. Cement and Concrete Composites, 2020, 113:103730. [百度学术]
LI Z, JIN Z Q, XU X B, et al. Combined application of novel electromagnetic sensors and acoustic emission apparatus to monitor corrosion process of reinforced bars in concrete[J]. Construction and Building Materials, 2020, 245:118472. [百度学术]
FERNANDES B, WADE J D, NIMS D K, et al. A new magnetic sensor concept for nondestructive evaluation of deteriorated prestressing strand[J]. Research in Nondestructive Evaluation, 2012, 23(1):46‑68. [百度学术]
ELYASIGORJI A, REZAEE M, GHORBANPOOR A. Magnetic corrosion detection in concrete structures[C]// International Conference on Sustainable Infrastructure 2019. Reston:American Society of Civil Engineers, 2019:175‑184. [百度学术]
HUANG J H, DONG Z, FU C Q, et al. Evaluation of nonuniform corrosion of steel in concrete based on two‑yoke magnetic sensor[J]. Journal of Materials in Civil Engineering, 2022, 34(9):04022204. [百度学术]
ELYASIGORJI A. MFL‑based detection of flaws of pre‑stressed concrete girders[D]. Wisconsin:The University of Wisconsin‑Milwaukee, 2021. [百度学术]
FERNANDES B, NIMS D, DEVABHAKTUNI V. Computer aided modeling of magnetic behavior of embedded prestressing strand for corrosion estimation[J]. Journal of Nondestructive Evaluation, 2013, 32:124‑133. [百度学术]
RUMICHE F, INDACOCHEA J E, Wang M L. Assessment of the effect of microstructure on the magnetic behavior of structural carbon steels using an electromagnetic sensor[J]. Journal of Materials Engineering and Performance, 2008, 17:586‑593. [百度学术]
YOUSAF J, HARSENO R W, KEE S H, et al. Evaluation of the size of a defect in reinforcing steel using magnetic flux leakage (MFL) measurements[J]. Sensors, 2023, 23(12):5374. [百度学术]
李哲, 金祖权, 邵爽爽, 等. 海洋环境下混凝土中钢筋锈蚀机理及监测技术概述[J]. 材料导报, 2018, 32(23):4170‑4181. [百度学术]
LI Zhe, JIN Zuquan, SHAO Shuangshuang, et al. A review on reinforcement corrosion mechanics and monitoring techniques in concrete in marine environment [J]. Materials Reports, 2018, 32(23):4170‑4181. (in Chinese) [百度学术]
QIU J L, ZHANG H, ZHOU J T, et al. An SMFL‑based non‑destructive quantification method for the localized corrosion cross‑sectional area of rebar[J]. Corrosion Science, 2021, 192:109793. [百度学术]
XIA R C, ZHANG H, ZHOU J T, et al. Probability evaluation method of cable corrosion degree based on self‑magnetic flux leakage[J]. Journal of Magnetism and Magnetic Materials, 2021, 522:167544. [百度学术]
ZHAO B X, YAO K, WU L B, et al. Theoretical and experimental study on the effect of stress corrosion on magnetic flux leakage signals[J]. Construction and Building Materials, 2023, 399:132461. [百度学术]
KRAUSE H J, WOLF W, GLAAS W, et al. SQUID array for magnetic inspection of prestressed concrete bridges[J]. Physica C:Superconductivity, 2002, 368(1):91‑95. [百度学术]
田静. 基于爬索机器人的缆索内部缺陷检测研究[D]. 哈尔滨:哈尔滨理工大学, 2022. [百度学术]
TIAN Jing. Research of the cable internal defect detection based on cable climbing robot [D]. Harbin:Harbin University of Science and Technology, 2022. (in Chinese) [百度学术]
JILES D C, ATHERTON D L. Theory of the magnetisation process in ferromagnets and its application to the magnetomechanical effect[J]. Journal of Physics D:Applied Physics, 1984, 17(6):1265‑1281. [百度学术]
JILES D C. Theory of the magnetomechanical effect[J]. Journal of Physics D:Applied Physics. 1998, 28(8):1537‑1546. [百度学术]
SHI P P, JIN K, ZHENG X J. A magnetomechanical model for the magnetic memory method[J]. International Journal of Mechanical Sciences, 2017, 124:229‑241. [百度学术]
韦璐茜, 苏三庆, 王威, 等. 钢箱梁受弯屈曲的磁记忆参数表征[J]. 振动与冲击, 2022, 41(16):142‑148. [百度学术]
WEI Luqian, SU Sanqing, WANG Wei, et al. Characterization of buckling of a steel box girder under bending using parameter of magnetic memory [J]. Journal of Vibration and Shock, 2022, 41(16):142‑148. (in Chinese) [百度学术]
GONG Y, ZHOU J T, ZHAO R Q, et al. Study on stress measurement for steel bars inside RC beams based on self‑magnetic flux leakage effect[J]. Journal of Magnetism and Magnetic Materials, 2022, 562:169784. [百度学术]
QIU G T, CAI Y Q, LI Z J. Multiscale investigation of magnetic field distortion on surface of ferromagnetic materials caused by stress concentration for metal magnetic memory method[J]. Computational Materials Science, 2022, 209:111353. [百度学术]
BAO S, LOU H J, ZHAO Z Y. Evaluation of stress concentration degree of ferromagnetic steels based on residual magnetic field measurements[J]. Journal of Civil Structural Health Monitoring, 2020, 10:109‑117. [百度学术]
童凯, 周建庭, 赵瑞强, 等. 反复拉伸加载下钢筋力磁耦合效应[J]. 建筑材料学报, 2023, 26(7):771‑782. [百度学术]
TONG Kai, ZHOU Jianting, ZHAO Ruiqiang, et al. Force‑magnetic coupling effect of steel bars under repeated tensile loading[J]. Journal of Building Materials, 2023, 26(7):771‑782. (in Chinese) [百度学术]
TONG K, ZHANG H, ZHAO R Q, et al. Investigation of SMFL monitoring technique for evaluating the load‑bearing capacity of RC bridges[J]. Engineering Structures, 2023, 293:116667. [百度学术]
TONG K, ZHOU J T, ZHAO R Q, et al. Quantitative measurement of stress in steel bars under repetitive tensile load based on force‑magnetic coupling effect[J]. Measurement, 2022, 202:111820. [百度学术]
ZHANG K, ZHANG J, JIN W, et al. Characterization of fatigue crack propagation of pitting‑corroded rebars using weak magnetic signals[J]. Engineering Fracture Mechanics, 2021, 257:108033. [百度学术]
黄爽, 张军, 金伟良, 等. 基于压磁效应的锈胀开裂混凝土梁疲劳性能试验研究[J]. 海洋工程, 2022, 40(6):105‑113. [百度学术]
HUANG Shuang, ZHANG Jun, JIN Weiliang, et al. Experimental study on fatigue performance of corroded and cracked concrete beams based on piezomagnetic effect [J]. The Ocean Engineering, 2022, 40(6):105‑113. (in Chinese) [百度学术]
张军, 张凯, 金伟良, 等. 混凝土梁内坑蚀钢筋的疲劳断裂特性及其压磁表征研究[J]. 土木工程学报, 2023, 56(2):34‑45. [百度学术]
ZHANG Jun, ZHANG Kai, JIN Weiliang, et al. Research on fatigue fracture characteristics of pitting‑corroded reinforcement in concrete beam and its piezomagnetic characterization [J]. China Civil Engineering Journal, 2023, 56(2):34‑45. (in Chinese) [百度学术]