网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

钢筋混凝土结构锈蚀特征的漏磁探测研究进展  PDF

  • 张伟平 1,2
  • 邱俊澧 1,2
  • 姜超 1,2
1. 同济大学 工程结构性能演化与控制教育部重点实验室,上海 200092; 2. 同济大学 土木工程学院,上海 200092

中图分类号: TU411

最近更新:2024-12-02

DOI:10.3969/j.issn.1007-9629.2024.11.007

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

以混凝土结构中钢筋锈蚀特征的漏磁探测技术为主线,对相关研究进行综合回顾与分析.结果表明,基于漏磁探测技术能够准确识别混凝土结构中钢筋的锈蚀区域并定量评估钢筋锈蚀率.为进一步提升利用漏磁技术探测既有钢筋混凝土结构锈蚀特征的适用性和准确性,未来还需要充分考虑磁化强度随机分布引起的锈蚀率评估结果的概率分布特性,明确应力、疲劳、箍筋/相邻纵筋、锈蚀产物和混凝土的影响,推动基于漏磁成像的计算机视觉自动识别和融合多指标、多技术方法的应用.

混凝土结构广泛应用于桥梁、建筑和隧道等基础设

1‑2. 在荷载与环境共同作用下,混凝土中的钢筋发生锈3‑4,引起钢筋截面减小,钢-混黏结退化,保护层开5,导致结构受力性能退化,可靠性降6‑7,甚至提前遭到破坏,从而造成巨大生命财产损失. 及时发现并准确测定混凝土中钢筋锈蚀的发生和发展,对保障结构全寿命安全具有重要意义.

受相对湿度、含氧量和材料特性等影响,混凝土结构中的锈蚀过程随机性很

8‑12 . 钢筋锈蚀一般采用电化学和物理方法探测. 其中,采用半电池电位等电化学方13‑14 虽可获取钢筋真实的锈蚀状态或锈蚀速率,但很难测定锈蚀率η. 采用声发15、光纤传16及红外热成17 等物理方法虽能够定性估计钢筋的锈蚀程度,但易受随机环境条件、材料特性和复杂锈蚀体系参数的干扰而无法量化η. 虽然X/γ射线断层扫18精确成像实现了对高精度η的探测,但放射污染、高成本和低效率限制了其工程应用. 与之相比,尽管涡流、探地雷达和漏磁等电磁法的评估精度尚有差距,但更加适用于工程应用. 其中漏磁法又以成本低、效率高和抗干扰能力强成为探测钢筋锈蚀的优选方法.

本文对基于漏磁法探测钢筋锈蚀研究的丰富成果进行整体回顾,以期发现关键问题,明确未来研究重点.

1 原理简述

钢筋漏磁原理通常被描述为“铁磁构件被磁化后其内部会产生磁场,若构件上存在锈蚀等缺陷,磁场会泄漏到构件外部并形成漏磁

19”. 根据有无人工磁激励装置,钢筋漏磁可分为漏20和自发漏5 两种形式.两者物理本质一致,均可研究分析钢筋的锈蚀特征.

2 基于漏磁的钢筋锈蚀定位和锈蚀宽度评估

钢筋锈蚀可分为局部锈蚀和整体锈蚀. 图1为钢筋局部锈蚀的漏磁特征. 对于钢筋局部锈蚀,无论锈坑几何形态为V

5、半弧20‑21还是矩22‑23 ,均存在图1(a)所示的漏磁曲线. 图1(a)显示:钢筋的2个漏磁分量HSxHSz的曲线在锈蚀区域出现明显畸变,且在局部锈蚀中点或边界处出现峰值,该特征已被广泛用于准确定位局部锈520‑53;利用HSx曲线与x轴的交点间距ΔxHSz曲线的峰谷值间距Δz可以确定锈蚀宽度. 由图1(b)可见,基于Δx实施的锈蚀宽度评估案例准确性较43. 然而,Δx和Δz会随着传感器与钢筋直线距离(提离高度)的增大而增加,从而影响锈蚀宽度估计的准确性. 因此,未来基于漏磁的锈蚀宽度评估还需要进一步考虑该影响. 此外,使用平面扫描数据可以对钢筋的局部锈蚀进行漏磁成34,该方法准确性较高.

图1  钢筋局部锈蚀的漏磁特征

Fig.1  MFL characteristics of rebar’s local corrosion

520‑2343

钢筋的整体锈蚀具有复杂的不均匀锈蚀形态,常用有限元仿真求解漏磁数值. 整体锈蚀钢筋的漏磁场变化包括两部分:一是截面积缩减造成的漏磁强度整体降低,二是不均匀锈蚀引起的漏磁场局部波

54‑56. 总体上看,无论是局部锈蚀还是整体锈蚀,采用漏磁法探测钢筋锈蚀均是从分析漏磁场变化这一本质入手的.

3 基于漏磁的钢筋锈蚀率评估

3.1 钢筋锈蚀率的定性评估

确定钢筋锈蚀的位置和宽度后,需要确定的是钢筋锈蚀率η. 大量理论和实践证明,钢筋锈蚀漏磁变幅Am随着锈蚀深度dη的增加而单调增加. 基于此,研究发现Amη线性相

5212228‑3134373944505257‑76.图2为钢筋锈蚀漏磁变幅Am(归一化漏磁变幅NAm)与锈蚀率η的典型线性关系及线性增长速率L. 根据唯象理论,这种线性关系可以理解为一旦钢筋截面受到损失,其内部的磁力线就等比例“漏”到外部. 尽管该线性关系定性判断一致,但这些文献中L的最大差异接近7个数量级(图2(c)). 这表明,不同钢筋试件在相同锈蚀率η下锈蚀漏磁变幅Am差异巨大,故而仅根据Am无法评估钢筋的η. 根本原因在于磁化激励或自发磁化使得不同钢筋的磁化强度M大相径庭,进而导致Am出现巨大差别.

图2  钢筋锈蚀漏磁变幅(归一化漏磁变幅)与锈蚀率的典型线性关系及其线性增长速率

Fig.2  Typical linear relationships between MFL variation amplitude(normalized MFL variation amplitude) and corrosion degree and linear growth rates [

5,21,22,28‑31,34,37,39,44,50,52,57‑76]

3.2 基于概率的钢筋锈蚀率定量评估

如上所述,钢筋锈蚀漏磁变幅Am本质上取决于锈蚀率η和磁化强度M. 为了基于Am来定量评估钢筋的η,须消除钢筋在磁化强度M上的差异,以便将“一个方程,两个未知数”的非唯一解问题转化为“一个方程,一个未知数”的唯一解问题. 目前,基于钢筋感应磁场强度HI和自发漏磁场强度HS的“动态联动机制”,已经发展出一种针对钢筋局部锈蚀率η的无损量化评估方

75. 在理想的纵向均匀磁化假定条件下,此“动态联动机制”实质上是钢筋的HIHSM的纵向分量Mx75 ,其表达式如下:

HS=dMx8πμ0f1(x, y, z, w, r) (1)
HI=Mx8πμ0f2(x, y, z, l, r) (2)

式中:xyz为空间坐标;w为1/2局部锈蚀宽度,mm;μ0为真空磁导率,H/mm;l为1/2钢筋长度,mm;r为钢筋半径,mm.

研究发现,在HSHI某一分量的曲线上分别取幅值、梯度或均值等简单几何参数T1T2,将两者进行比值处理后得到量化指标I,其表达

75为:

I = dT1[f1(x, y, z, w, r)]T2[f2(x, y, z, l, r)] = d f3(x, y, z, w, l, r) (3)

式(3)可知,量化指标I的表达式中消除了Mx,取用不同的T1T2将产生不同的I. 采用40根具有不同磁化强度M的局部锈蚀钢筋进行试验,其漏磁量化处理与锈蚀率分级评估结果见图3.

图3  漏磁量化处理和钢筋锈蚀率分级评估结果

Fig.3  Quantification of MFL and classification of rebar corrosion degree

75‑76

图3(a)可见,40根局部锈蚀钢筋的HSz曲线的割线斜率T1是随机分布的. 根据式(3)可通过钢筋感应磁场法向分量HIz曲线的割线斜率T2将其转化成与锈蚀率η线性相关的量化指标I

75. 如此一来,只要钢筋处于纵向磁化状态,磁化强度M差异的不利影响就会被极大消除. 事实上,由于轧制、受力和地磁场的磁化作用,钢筋的这种纵向磁化状态广泛存52228‑293135‑3644485052‑535675‑78.因此,目前采用式(3)所示的量化方法,提出了钢筋局部或整体锈蚀情形下,与锈蚀率η线性相关的各种漏磁量化指3035‑364850535675‑76. 不过,量化指标I在理论上要求的理想纵向均匀磁化实际上很难完全满足. 钢筋的磁化强度M除了主要的纵向分量Mx,亦有随机分布的次要分量(切向分量My和法向分量Mz),这也是图3(a)中线性关系出现离散性的根源.

图3(b)可见:文献[

76]提出的另一个量化指标Ic与锈蚀率η之间的线性关系离散程度较高,不能直接用于评估钢筋的锈蚀率η;借助于贝叶斯理论可将其转换为基于实测Ic数值的锈蚀率η分级评估结果.

这种基于概率的方法可以合理考虑钢筋在非理想纵向磁化状态下引起的评估误差,相似研究汇总于表1. 由表1可见,基于各漏磁量化指标可以获得较好的锈蚀率η评估精度,而且采用多个指标进行综合评估精度更高;在钢筋锈蚀率η很低或较高时准确率可达90%以

30355076.

表1  基于漏磁量化指标的锈蚀率概率量化评估
Table 1  Probabilistic assessment of corrosion degree η based on MFL quantification indices
ResourceIndexAssessment methodAssessment accuracy
Ref.[35] Quantitative KG Bayesian model 56.8%-97.4%
Ref.[76] Quantitative Kc Bayesian model 65.0%-95.7%
Ref.[30]

Nonquantitative β,

quantitative γ

Bayesian model

SVM

57.1%-100.0% of single index,85.7%-100.0% of double indices,and the classification accuracy of SVM exceeds 90.0%
Ref.[50]

Nonquantitative β,

quantitative γ

Bayesian model 56.6%-100.0% of single index,83.3%-100.0% of double indices
Ref.[48]

Nonquantitative M1,M3,

M4;quantitative M2

SVM The classification accuracy of SVM is 77.7%
Ref.[36]

Quantitative K,

rusty spot area S

Bayesian model 70.0% of only K,82.5% of K&S
Ref.[79] Peak,peakvalley spacing BP neural network 9.5%

Note:  SVM is support vector machine.

上述结果表明,利用漏磁技术对钢筋锈蚀率η进行探测和评估具有很好的应用潜力. 但目前,不同研究中构造的量化指标并不统一,如何选定一个最优指标或者指标组合值需要进一步研究. 此外,针对图3(b)中钢筋锈蚀率η的概率分布进一步拓展,以用于锈蚀梁的时变可靠性分析. 由于锈蚀梁锈胀裂缝宽度与锈蚀率η有显著的离散线性关系,先基于机器学习模型,根据实测裂缝宽度估计锈蚀率η的概率分布;再采用蒙特卡洛有限元分析,即可获得如图4所示的锈蚀梁抗弯承载力的概率分

18. 按照类似思路,基于漏磁探测数据可实现对锈蚀钢筋混凝土结构的受力性能进行概率评价和时变可靠性分析. 根据表1中的信息,使用多个漏磁量化指标或结合锈斑面积、裂缝宽度等信息,能够获得准确度更高的评估结果.

图4  基于锈胀裂缝宽度的混凝土锈蚀梁抗弯承载力概率分布估计

Fig.4  Probability distribution estimation of flexural capacity of corrooded RC beam based on corrosion crack width

18

4 钢筋锈蚀特征漏磁测评的影响因素

由于现有各种量化指标通常使用无外加荷载裸钢筋、外包混凝土试件和矩形截面梁的漏磁数据,无法全面考虑钢筋应力、疲劳损伤、箍筋/相邻纵筋漏磁干扰、锈蚀产物和混凝土的影响.对于铁磁性材料,理论上已证明应力变化会使其磁化强度M出现非线性变

80‑82.图5为应力水平、疲劳、箍筋/相邻纵筋、锈蚀产物和混凝土对锈蚀钢筋漏磁的影响.

图5  应力、疲劳、箍筋/相邻纵筋、锈蚀产物和混凝土对锈蚀钢筋漏磁的影响

Fig.5  Effects of stress,fatigue,stirrups/adjacent steel bars,rust products,and concrete on MFL of corroded rebar

212856‑5784

图5(a)可见,钢材从加载状态到极限状态过程中,其漏磁数值B随着应力水平的增加呈现先非线性增加后近似线性下

83‑84的变化趋势. 钢材处在弹性阶段时B的非线性增长源自钢材磁化强度M的非线性增80‑82,而弹塑性阶段时B的线性下降是由于占据主导的塑性损伤产生了类似于锈蚀的漏85‑86. 当锈蚀与持续荷载作用同时存在时,钢筋混凝土梁的漏磁变幅ΔB随着锈蚀率η的增加而线性增63,与图2(a)、(b)中无荷载线性结果一致. 该研究中钢筋的最大锈蚀率η为0.063,由锈蚀所导致的应力增幅不超过6.7%,表明较小范围的应力变化对锈蚀的漏磁影响有限. 在弹性应力循环作用下,钢筋的漏磁变幅ΔB与应力幅之间有良好的线性关7787‑89,与图5(a)中静力加载的弹性阶段相似.

图5(a)还可见:随着疲劳次数的增加直至疲劳破坏,漏磁变幅ΔB的切向分量ΔBt和法向分量ΔBn与疲劳荷载次数的线性关系扩展为“三段式

90‑92;第2段的水平线性段是由于该阶段 拉伸应力使钢筋的磁畴纵向重取向(磁化强度M)趋于稳定;随着疲劳次数的增加,塑性微观损伤累积诱发的钢筋宏观缺陷使得ΔBt和ΔBn在第3段线性陡升. 整体上看,疲劳加载过程中漏磁的绝对值与静力加载一样均先升后降,这种相似性的本质在于静力和疲劳都使钢筋经历了“磁畴纵向重取向—微观损伤累积—宏观缺陷漏磁”这一物理过程. 此外,尽管钢筋的疲劳漏磁研究案例已有不少,但较为完善的疲劳与锈蚀的耦合研究尚未见报道.

图5(b)可见:箍筋同纵筋锈蚀一样也会引起漏磁场的变

21;纵筋锈蚀缺陷诱发的漏磁场变在横向上存在局域性,而在箍筋上基本保持不变;箍筋引起的纵向漏磁分量Bx曲线出现周期性波28,且此现象亦常见于其他研233238‑3949677078. 该周期性波动可通过算法进行滤除或将箍筋漏磁部分从整体场强中进行解耦处理. 当然,这是箍筋的存在对锈蚀纵筋漏磁的影响,此外还需要考虑箍筋的锈蚀对锈蚀纵筋漏磁的干扰. 通常,箍筋出现锈蚀会先于纵筋且其锈蚀形态不易预测,此时锈蚀箍筋的漏磁不再是图5(b)中易于处理的分布形式. 已有研究指出,混凝土梁中箍筋的锈蚀会延缓纵筋漏磁的发生,但不会显著改变锈蚀全过程中纵筋漏磁量值的增长趋5. 然而,如何准确解耦分离纵筋和箍筋的锈蚀漏磁尚无报道. 此外,锈蚀纵筋的漏磁场还会受到相邻纵筋的影响,目前也无针对性的完善研究. 总而言之,未来箍筋和相邻钢筋的漏磁干扰还有待深入分析.

外部探测到的钢筋漏磁场强度与相邻纵筋μ0密切相

520. 在工程实践中探测漏磁时,磁传感器与锈蚀钢筋之间的锈蚀产物和混凝土均会影响探测结果. 一般而言,这种影响可以通过锈蚀产物和混凝土的相对磁导率μrpμrc来考虑. 磁性γFe2O3和Fe3O4使锈蚀产物的相对磁导率μrp通常要比真空(或空气)磁导率μ0(1.0)57,文献[56]中测得地磁环境下μrp在1.45~1.87之间,接近1.0,而钢筋的相对磁导率μrs取值通常为100~10 00024586365‑6669. 因此,设置μrs = 200,μrc = 1.00和μrp = 1.87,根据文献[56]中的静磁有限元仿真流程简略分析锈蚀产物对漏磁的影响,结果如图5(c)所示. 钢筋 的纵向磁化强度采用一个0.1 T的剩余磁通密度纵向分量来模拟. 钢筋的外部设置有环向厚度约为5 mm的锈蚀产物层,该层的相对磁导率设置为1.00和1.87,以分别模拟有/无锈蚀产物. 结果显示,有无锈蚀产物的漏磁场纵向分量Hx曲线几乎重叠,两者之间的误差基本不超过5%,与文献[57]中建议的3%漏磁强度修正比例接近. 已经证明,基于该静磁有限元仿真流程得到的钢筋自发漏磁场强、分布与实际情况具有很好的一致56. 因此,根据图5(c)中的数值解可以初步判断锈蚀产物的影响是微小的,当然更准确的分析后续尚须深化.

5 建议的钢筋锈蚀特征漏磁探测评估流程

综上所述,一旦相关研究得以完善,即可根据图6所建议的流程进行混凝土结构钢筋锈蚀特征的漏磁探测与评估. 首先,基于高精度磁探测设备获得的锈蚀钢筋混凝土结构近表面漏磁场数据,进行漏磁成像并应用计算机视觉自动识别锈蚀位置和宽度. 同时,根据式(3)给出的量化理论定义并计算漏磁量化指标I. 在此基础上,进一步考虑应力和箍筋等因素的影响并予以修正,得到修正的量化指标Im;随后,根据Im及基于I的锈蚀率η标准概率密度函数,得到Im所对应的锈蚀率η概率密度分布. 此外,融合多指标或多技术信息还可获得精度更高的评估结果. 如此,即可达成基于漏磁的混凝土结构钢筋锈蚀特征精细化定量评估的目标.

图6  建议的钢筋锈蚀特征漏磁探测评估流程

Fig.6  Proposed process for MFLbased detection and assessment of rebar’s corrosion characteristics

6 结论与展望

(1)应当考虑钢筋随机磁化分布引起的钢筋锈蚀率量化评估结果的随机性,发展基于概率的钢筋锈蚀率定量评估方法.

(2)明确应力、疲劳、锈蚀箍筋/相邻纵筋和锈蚀产物的影响.

(3)基于漏磁成像和计算机视觉能够自动识别锈蚀位置和锈蚀率.

(4)将多指标或多技术进行融合,以进一步提升钢筋锈蚀率评估精度.

参考文献

1

高玉军邓翀秦明强. 铁路隧道C30早高强喷射混凝土试验研究与应用[J]. 建筑材料学报2023269):10111022. [百度学术] 

GAO YujunDENG ChongQIN Mingqiang. Experimental research and application of C30 early and highstrength shotcrete in railway tunnel[J]. Journal of Building Materials2023269):10111022. (in Chinese) [百度学术] 

2

王之龙刘伊生邵高峰. 基于普查数据的我国城市建筑物质存量动态演化研究[J]. 建筑科学202036增刊2):339344. [百度学术] 

WANG ZhilongLIU YishengSHAO Gaofeng. Research on the dynamic evolution of building stock in China[J]. Building Science202036Suppl 2):339344. (in Chinese) [百度学术] 

3

JIANG CGU X LHUANG Q Het al. Carbonation depth predictions in concrete bridges under changing climate conditions and increasing traffic loads[J]. Cement and Concrete Composites201893140154. [百度学术] 

4

JIANG CSONG CGU X Let al. Modeling electrochemical chloride extraction process in cementbased materials considering coupled multiion transports and thermodynamic equilibriums[J]. Journal of Cleaner Production2023401136778. [百度学术] 

5

QIU J LZHANG HZHOU J Tet al. Experimental analysis of the correlation between bending strength and SMFL of corroded RC beams[J]. Construction and Building Materials2019214594605. [百度学术] 

6

ZHANG W PQIU J LZHAO C Let al. Structural performance of corroded precast concrete tunnel lining[J]. Tunnelling and Underground Space Technology2022128104658. [百度学术] 

7

GU X LGUO H YZHOU B Bet al. Corrosion nonuniformity of steel bars and reliability of corroded RC beams[J]. Engineering Structures2018167188202. [百度学术] 

8

孙佳金祖权秦一琦. 钢筋非均匀锈蚀与混凝土开裂试验及数值模拟[J]. 建筑材料学报2024274):309319. [百度学术] 

SUN JiaJIN ZuquanQIN Yiqi. Experimental and numerical simulation on nonuniform corrosion of steel bar and concrete cracking[J]. Journal of Building Materials2024274):309319. (in Chinese) [百度学术] 

9

尚明刚张云升何忠茂. 盐渍土环境下钢筋混凝土恒电流加速锈蚀试验及可靠性分析[J]. 建筑材料学报2022257):751759. [百度学术] 

SHANG MinggangZHANG YunshengHE Zhongmaoet al. Constant current accelerated corrosion test and reliability analysis of reinforced concrete in saline soil environment[J]. Journal of Building Materials2022257):751759. (in Chinese) [百度学术] 

10

RAUPACH M. Models for the propagation phase of reinforcement corrosion—An overview[J]. Materials and Corrosion2006578):605613. [百度学术] 

11

YU Y GGAO WCASTEL Aet al. Modelling steel corrosion under concrete nonuniformity and structural defects[J]. Cement and Concrete Research2020135106109. [百度学术] 

12

BUI H TMAEKAWA KTAN K H. Microcell and macrocell corrosion of steel bars in reinforced concrete slabs under different corrosive environments and cathode/anode configurations[J]. Cement and Concrete Composites2023138104989. [百度学术] 

13

RODULFO PWANG B YGUPTA Ret al. Relationship between electrical conductivity, half cell potential, linear polarization resistance and macrocell current of cementitious repair materials[J]. Construction and Building Materials2023401132733. [百度学术] 

14

ZHANG LNIU D TWEN Bet al. Initialcorrosion condition behavior of the Cr and Al alloy steel bars in coral concrete for marine construction[J]. Cement and Concrete Composites2021120104051. [百度学术] 

15

YU A PNAQVI M WHU L Bet al. An experimental study of corrosion damage distribution of steel bars in reinforced concrete using acoustic emission technique[J]. Construction and Building Materials2020254119256. [百度学术] 

16

FAN LTAN XZHANG Q Het al. Monitoring corrosion of steel bars in reinforced concrete based on helix strains measured from a distributed fiber optic sensor[J]. Engineering Structures2020204110039. [百度学术] 

17

SOLLA MLAGÜELA SFERNÁNDEZ Net al. Assessing rebar corrosion through the combination of nondestructive GPR and IRT methodologies[J]. Remote Sensing20191114):1705. [百度学术] 

18

ZHANG M YAKIYAMA MSHINTANI Met al. Probabilistic estimation of flexural loading capacity of existing RC structures based on observational corrosioninduced crack width distribution using machine learning[J]. Structural Safety202191102098. [百度学术] 

19

全国无损检测标准化技术委员会. 无损检测 漏磁检测 总则GB/T 31212—2014 [S]. 北京中国标准出版社2015. [百度学术] 

National Technical Committee 56 on Non‑destructive testing of standardization Administration of China. Non‑destructive testing―Magnetic flux leakage testing―General principles:GB/T 31212—2014[S]. BeijingStandards Press of China2015. (in Chinese) [百度学术] 

20

叶华睿. 电力基础设施钢筋砼中钢筋锈蚀的磁感应检测方法与实验研究[D]. 重庆重庆大学2022. [百度学术] 

YE Huarui. Magnetic induction detection method and experimental study of rebar corrosion in reinforced concrete of power infrastructure [D]. ChongqingChongqing University2022. (in Chinese) [百度学术] 

21

GHORBANPOOR ASHI S. Assessment of corrosion of steel in concrete structures by magnetic based NDE techniques[C]// Proceeding of the 1994 Symposium on Techniques to Access the Corrosion Activity of Steel Reinforced Concrote. PhiladelphiaASTM International1996117131. [百度学术] 

22

ZHOU J TQIU J LZHOU Y Xet al. Experimental study on residual bending strength of corroded reinforced concrete beam based on micromagnetic sensor[J]. Sensors2018188):2635. [百度学术] 

23

SHAMS SGHORBANPOOR ALIN Set al. Nondestructive testing of steel corrosion in prestressed concrete structures using the magnetic flux leakage system[J]. Transportation Research Record2018267241):132144. [百度学术] 

24

YE H RZHANG Z LDAN Y Het al. Novel method for measurement of rebar state of cement tower[J]. IEEE Transactions on Instrumentation and Measurement20207018. [百度学术] 

25

杨茂周建庭张洪. 混凝土内部钢筋锈蚀的磁记忆检测[J]. 建筑材料学报2018212):345350. [百度学术] 

YANG MaoZHOU JiantingZHANG Honget al. Magnetic memory detection of rebar corrosion in concrete[J]. Journal of Building Materials2018212):345350. (in Chinese) [百度学术] 

26

周建庭张森华张洪. 混凝土内锈蚀钢筋的漏磁信号分析[J]. 江苏大学学报(自然科学版)2019403):355359. [百度学术] 

ZHOU JiantingZHANG SenhuaZHANG Honget al. Magnetic flux leakage signal analysis of corroded reinforcing bar in concrete[J]. Journal of Jiangsu University(Natural Science Edition)2019403):355359. (in Chinese) [百度学术] 

27

张爽. 基于磁记忆效应的RC梁内部钢筋损伤检测研究[D]. 济南鲁东大学2019. [百度学术] 

ZHANG Shuang. Research on internal reinforcement damage detection of RC beam based on magnetic memory effect[D]. JinanLudong University2019. (in Chinese) [百度学术] 

28

张元恒. 基于金属磁记忆的钢筋混凝土结构锈蚀度检测技术研究[D]. 重庆重庆交通大学2020. [百度学术] 

ZHANG Yuanheng. Research on corrosion degree detection technology of reinforced concrete structure based on metal magnetic memory[D]. ChongqingChongqing Jiaotong University2020. (in Chinese) [百度学术] 

29

赵亚宇. 基于金属磁记忆漏磁特性的钢绞线锈蚀度检测试验研究[D]. 重庆重庆交通大学2021. [百度学术] 

ZHAO Yayu. Experimental research on corrosion degree detection of steel strand based on magnetic flux leakage characteristics of metal magnetic memory [D]. ChongqingChongqing Jiaotong University2021. (in Chinese) [百度学术] 

30

周建庭夏乾文杨茂. 基于自发漏磁效应的钢筋锈蚀分级评估研究[J]. 重庆交通大学学报(自然科学版)20224110):9399. [百度学术] 

ZHOU JiantingXIA QianwenYANG Maoet al. Grading assessment of steel corrosion based on spontaneous magnetic flux leakage effect [J]. Journal of Chongqing Jiaotong University (Natural Science)20224110):9399. (in Chinese) [百度学术] 

31

邱俊澧周建庭廖棱. 锈蚀钢筋混凝土梁受弯承载力与自发漏磁相关性试验研究[J]. 建筑结构学报2020419):127136. [百度学术] 

QIU JunliZHOU JiantingLIAO Lenget al. Experimental study on correlation between bending capacity and selfmagnetic flux leakage of corroded RC beams [J]. Journal of Building Structures2020419):127136. (in Chinese) [百度学术] 

32

AZARI HGHORBANPOOR ASHAMS S. Development of robotic nondestructive testing of steel corrosion of prestressed concrete bridge girders using magnetic flux leakage system[J]. Transportation Research Record202026748):466476. [百度学术] 

33

SUN Y HLIU S WDENG Z Yet al. Magnetic flux leakage structural health monitoring of concrete rebar using an open electromagnetic excitation technique[J]. Structural Health Monitoring2018172):121134. [百度学术] 

34

LO C C HNAKAGAWA N. Evaluation of eddy current and magnetic techniques for inspecting rebars in bridge barrier rails[C]// AIP Conference Proceedings. ColoradoAmerican Institute of Physics201315111):13711377. [百度学术] 

35

ZHANG HMA X TJIANG H Jet al. Grading evaluation of overall corrosion degree of corroded RC beams via SMFL technique[J]. Structural Control and Health Monitoring20232023672823. [百度学术] 

36

CHEN LLIU X LLIN Y Fet al. Quantitative corrosion detection of reinforced concrete based on selfmagnetic flux leakage and rust spot area[J]. Engineering Research Express202243):035063. [百度学术] 

37

XIA R CZHANG HZHOU J Tet al. Corrosion nondestructive testing of loaded steel strand based on selfmagnetic flux leakage effect[J]. Nondestructive Testing and Evaluation2022371):5670. [百度学术] 

38

DIEDERICH HVOGEL T. Evaluation of reinforcing bars using the magnetic flux leakage method[J]. Journal of Infrastructure Systems2017231):B4016001. [百度学术] 

39

ELYASIGORJI AREZAEE MGHORBANPOOR A. Characterization of corrosion in PS concrete girders by correlation analysis[C]// Structures Congress 2020. RestonAmerican Society of Civil Engineers2020285292. [百度学术] 

40

BEKTAŞ ÖKURBAN Y CÖZBOYLAN B. Development of magnetic flux leakage device as a nondestructive method for structural reinforcement detection[J]. Materiales de Construcción202272345):02421. [百度学术] 

41

MAHBAZ S BDUSSEAULT M BCASCANTE Get al. Detecting defects in steel reinforcement using the passive magnetic inspection method[J]. Journal of Environmental & Engineering Geophysics2017222):153166. [百度学术] 

42

MIETZ JFISCHER J. Evaluation of NDT methods for detection of prestressing steel damage at posttensioned concrete structures[J]. Materials and Corrosion20075810):789794. [百度学术] 

43

QU Y HZHANG HZHAO R Qet al. Research on the method of predicting corrosion width of cables based on the spontaneous magnetic flux leakage[J]. Materials20191213):2154. [百度学术] 

44

ZHAO Q YZHOU J TXIA Q Wet al. Nondestructive testing of steel corrosion fluctuation parameters based on spontaneous magnetic flux leakage and its relationship with steel bar diameter[J]. Materials20191224):4116. [百度学术] 

45

ZHANG HZHOU J TZHAO R Qet al. Experimental study on detection of rebar corrosion in concrete based on metal magnetic memory[J]. International Journal of Robotics & Automation201732530537. [百度学术] 

46

FERNANDES BTITUS MNIMS D Ket al. Practical assessment of magnetic methods for corrosion detection in an adjacent precast, prestressed concrete boxbeam bridge[J]. Nondestructive Testing and Evaluation2013282):99118. [百度学术] 

47

XIA R CZHOU J TZHANG Het al. Experimental study on corrosion of unstressed steel strand based on metal magnetic memory[J]. KSCE Journal of Civil Engineering20192313201329. [百度学术] 

48

YANG MZHOU J TZHAO Q Yet al. Quantitative detection of corroded reinforced concrete of different sizes based on SMFL[J]. KSCE Journal of Civil Engineering2022261):143154. [百度学术] 

49

FERNANDES BNIMS DDEVABHAKTUNI V. Comprehensive MMFMFL inspection for corrosion detection and estimation in embedded prestressing strands[J]. Journal of Civil Structural Health Monitoring201444355. [百度学术] 

50

LI B ALI S DZHANG G Zet al. Grading assessment of steel bar corrosion in concrete structures based on naive Bayesian model and spontaneous magnetic flux leakage effect[J]. Journal of Engineering and Applied Science2023701):3. [百度学术] 

51

ZHANG HLIAO LZHAO R Qet al. The nondestructive test of steel corrosion in reinforced concrete bridges using a micromagnetic sensor[J]. Sensors2016169):1439. [百度学术] 

52

XIA R CZHOU J TZHANG Het al. Quantitative study on corrosion of steel strands based on selfmagnetic flux leakage[J]. Sensors2018185):1396. [百度学术] 

53

YANG DQIU J LDI H Bet al. Quantitative evaluation of corrosion degrees of steel bars based on selfmagnetic flux leakage[J]. Metals201999):952. [百度学术] 

54

MOSHARAFI MMAHBAZ S BDUSSEAULT M B. Simulation of real defect geometry and its detection using passive magnetic inspection (PMI) method[J]. Applied Sciences201887):1147. [百度学术] 

55

MOSHARAFI MMAHBAZ S BDUSSEAULT M Bet al. Magnetic detection of corroded steel rebar:Reality and simulations[J]. NDT & E International2020110102225. [百度学术] 

56

QIU J LZHANG W PJING Y. Quantitative linear correlation between selfmagnetic flux leakage field variation and corrosion unevenness of corroded rebars[J]. Measurement2023118113173. [百度学术] 

57

李贤康. 基于磁场理论的钢筋锈蚀监测仪的工作机理与研发[D]. 杭州浙江大学2021. [百度学术] 

LEI Xiankang. Working mechanism and R&D of reinforcement corrosion monitor based on magnetic field theory [D]. HangzhouZhejiang University2021. (in Chinese) [百度学术] 

58

LEI IJIN X YTIAN Yet al. Numerical simulation of a magnetic corrosion detector for corrosion detection of steel rebar in concrete[J]. Journal of Civil Structural Health Monitoring202212114. [百度学术] 

59

吴昱劼. 基于磁场梯度张量的桥梁索结构腐蚀损伤测试方法研究[D]. 重庆重庆交通大学2020. [百度学术] 

WU Yujie. Research on corrosion damage testing method of bridge cable structure based on magnetic field gradient tensor [D]. ChongqingChongqing Jiaotong University2020. (in Chinese) [百度学术] 

60

吉祥周建庭张洪. 基于金属磁记忆的钢筋混凝土结构锈蚀检测[J]. 混凝土20196):151155. [百度学术] 

JI XiangZHOU JiantingZHANG Honget al. Corrosion detection of reinforced concrete structures based on metal magnetic memory[J]. Concrete20196):151155. (in Chinese) [百度学术] 

61

张凯. 基于弱磁效应腐蚀钢筋混凝土结构疲劳裂纹扩展行为研究[D]. 杭州浙江大学2023. [百度学术] 

ZHANG Kai. Study on fatigue crack growth behavior of corroded reinforced concrete structure on weak magnetic effect [D]. HangzhouZhejiang University2023. (in Chinese) [百度学术] 

62

FU C QHUANG J HDONG Zet al. Experimental and numerical study of an electromagnetic sensor for nondestructive evaluation of steel corrosion in concrete[J]. Sensors and Actuators A:Physical2020315112371. [百度学术] 

63

ZHANG J RLIU CSUN Met al. An innovative corrosion evaluation technique for reinforced concrete structures using magnetic sensors[J]. Construction and Building Materials20171356875. [百度学术] 

64

MOSHARAFI MMAHBAZ S BDUSSEAULT M B. Statistical methods to assess the reliability of magnetic data recorded over steel corrosion sites[J]. Construction and Building Materials2020264120260. [百度学术] 

65

LI ZJIN Z QGAO Yet al. Coupled application of innovative electromagnetic sensors and digital image correlation technique to monitor corrosion process of reinforced bars in concrete[J]. Cement and Concrete Composites2020113103730. [百度学术] 

66

LI ZJIN Z QXU X Bet al. Combined application of novel electromagnetic sensors and acoustic emission apparatus to monitor corrosion process of reinforced bars in concrete[J]. Construction and Building Materials2020245118472. [百度学术] 

67

FERNANDES BWADE J DNIMS D Ket al. A new magnetic sensor concept for nondestructive evaluation of deteriorated prestressing strand[J]. Research in Nondestructive Evaluation2012231):4668. [百度学术] 

68

ELYASIGORJI AREZAEE MGHORBANPOOR A. Magnetic corrosion detection in concrete structures[C]// International Conference on Sustainable Infrastructure 2019. RestonAmerican Society of Civil Engineers2019175184. [百度学术] 

69

HUANG J HDONG ZFU C Qet al. Evaluation of nonuniform corrosion of steel in concrete based on twoyoke magnetic sensor[J]. Journal of Materials in Civil Engineering2022349):04022204. [百度学术] 

70

ELYASIGORJI A. MFLbased detection of flaws of prestressed concrete girders[D]. WisconsinThe University of Wisconsin‑Milwaukee2021. [百度学术] 

71

FERNANDES BNIMS DDEVABHAKTUNI V. Computer aided modeling of magnetic behavior of embedded prestressing strand for corrosion estimation[J]. Journal of Nondestructive Evaluation201332124133. [百度学术] 

72

RUMICHE FINDACOCHEA J EWang M L. Assessment of the effect of microstructure on the magnetic behavior of structural carbon steels using an electromagnetic sensor[J]. Journal of Materials Engineering and Performance200817586593. [百度学术] 

73

YOUSAF JHARSENO R WKEE S Het al. Evaluation of the size of a defect in reinforcing steel using magnetic flux leakage (MFL) measurements[J]. Sensors20232312):5374. [百度学术] 

74

李哲金祖权邵爽爽. 海洋环境下混凝土中钢筋锈蚀机理及监测技术概述[J]. 材料导报20183223):41704181. [百度学术] 

LI ZheJIN ZuquanSHAO Shuangshuanget al. A review on reinforcement corrosion mechanics and monitoring techniques in concrete in marine environment [J]. Materials Reports20183223):41704181. (in Chinese) [百度学术] 

75

QIU J LZHANG HZHOU J Tet al. An SMFLbased nondestructive quantification method for the localized corrosion crosssectional area of rebar[J]. Corrosion Science2021192109793. [百度学术] 

76

XIA R CZHANG HZHOU J Tet al. Probability evaluation method of cable corrosion degree based on selfmagnetic flux leakage[J]. Journal of Magnetism and Magnetic Materials2021522167544. [百度学术] 

77

ZHAO B XYAO KWU L Bet al. Theoretical and experimental study on the effect of stress corrosion on magnetic flux leakage signals[J]. Construction and Building Materials2023399132461. [百度学术] 

78

KRAUSE H JWOLF WGLAAS Wet al. SQUID array for magnetic inspection of prestressed concrete bridges[J]. Physica C:Superconductivity20023681):9195. [百度学术] 

79

田静. 基于爬索机器人的缆索内部缺陷检测研究[D]. 哈尔滨哈尔滨理工大学2022. [百度学术] 

TIAN Jing. Research of the cable internal defect detection based on cable climbing robot [D]. HarbinHarbin University of Science and Technology2022. (in Chinese) [百度学术] 

80

JILES D CATHERTON D L. Theory of the magnetisation process in ferromagnets and its application to the magnetomechanical effect[J]. Journal of Physics D:Applied Physics1984176):12651281. [百度学术] 

81

JILES D C. Theory of the magnetomechanical effect[J]. Journal of Physics D:Applied Physics. 1998288):15371546. [百度学术] 

82

SHI P PJIN KZHENG X J. A magnetomechanical model for the magnetic memory method[J]. International Journal of Mechanical Sciences2017124229241. [百度学术] 

83

韦璐茜苏三庆王威. 钢箱梁受弯屈曲的磁记忆参数表征[J]. 振动与冲击20224116):142148. [百度学术] 

WEI LuqianSU SanqingWANG Weiet al. Characterization of buckling of a steel box girder under bending using parameter of magnetic memory [J]. Journal of Vibration and Shock20224116):142148. (in Chinese) [百度学术] 

84

GONG YZHOU J TZHAO R Qet al. Study on stress measurement for steel bars inside RC beams based on selfmagnetic flux leakage effect[J]. Journal of Magnetism and Magnetic Materials2022562169784. [百度学术] 

85

QIU G TCAI Y QLI Z J. Multiscale investigation of magnetic field distortion on surface of ferromagnetic materials caused by stress concentration for metal magnetic memory method[J]. Computational Materials Science2022209111353. [百度学术] 

86

BAO SLOU H JZHAO Z Y. Evaluation of stress concentration degree of ferromagnetic steels based on residual magnetic field measurements[J]. Journal of Civil Structural Health Monitoring202010109117. [百度学术] 

87

童凯周建庭赵瑞强. 反复拉伸加载下钢筋力磁耦合效应[J]. 建筑材料学报2023267):771782. [百度学术] 

TONG KaiZHOU JiantingZHAO Ruiqianget al. Forcemagnetic coupling effect of steel bars under repeated tensile loading[J]. Journal of Building Materials2023267):771782. (in Chinese) [百度学术] 

88

TONG KZHANG HZHAO R Qet al. Investigation of SMFL monitoring technique for evaluating the loadbearing capacity of RC bridges[J]. Engineering Structures2023293116667. [百度学术] 

89

TONG KZHOU J TZHAO R Qet al. Quantitative measurement of stress in steel bars under repetitive tensile load based on forcemagnetic coupling effect[J]. Measurement2022202111820. [百度学术] 

90

ZHANG KZHANG JJIN Wet al. Characterization of fatigue crack propagation of pittingcorroded rebars using weak magnetic signals[J]. Engineering Fracture Mechanics2021257108033. [百度学术] 

91

黄爽张军金伟良. 基于压磁效应的锈胀开裂混凝土梁疲劳性能试验研究[J]. 海洋工程2022406):105113. [百度学术] 

HUANG ShuangZHANG JunJIN Weilianget al. Experimental study on fatigue performance of corroded and cracked concrete beams based on piezomagnetic effect [J]. The Ocean Engineering2022406):105113. (in Chinese) [百度学术] 

92

张军张凯金伟良. 混凝土梁内坑蚀钢筋的疲劳断裂特性及其压磁表征研究[J]. 土木工程学报2023562):3445. [百度学术] 

ZHANG JunZHANG KaiJIN Weilianget al. Research on fatigue fracture characteristics of pittingcorroded reinforcement in concrete beam and its piezomagnetic characterization [J]. China Civil Engineering Journal2023562):3445. (in Chinese) [百度学术]