摘要
通过掺入聚醚型减缩剂(PSRA)改善碱激发矿渣-铜渣砂浆(CSM)的体积稳定性,研究了PSRA掺量对CSM凝结时间、抗压强度和干燥收缩率的影响,并采用等温量热仪、X射线衍射仪、扫描电镜-能谱仪、核磁共振和热重-差示量热分析仪等分析了PSRA对CSM水化进程和微观结构影响,探讨了PSRA的减缩机理.结果表明:PSRA的掺入延长了CSM净浆的凝结时间,延缓了体系的水化进程,且延缓作用随着PSRA掺量的增大而增强;PSRA掺量为0%~2.0%时,CSM的干燥收缩率和抗压强度均随着PSRA掺量的增大而逐渐减小;PSRA降低了孔溶液的表面张力,改变了孔结构,使得毛细管压力下降,进而起到减小CSM干燥收缩的效果.
关键词
铜渣是铜冶炼过程中的副产
AAM存在收缩大、易开裂等问
目前,SRA对普通混凝土性能的影响研究已取得了巨大进
铜渣(CS)来自安徽铜陵某有色金属冶炼厂,为高温水淬渣,经破碎后采用球磨机球磨,使其符合细度要求,所得铜渣粉密度为3.32 g/c
Material | SiO2 | Al2O3 | Fe2O3 | CaO | Na2O | MgO |
---|---|---|---|---|---|---|
CS | 24.01 | 6.77 | 41.24 | 10.72 | 3.08 | 2.61 |
GGBS | 27.92 | 15.66 | 0.35 | 40.58 | 0.59 | 9.83 |

图1 铜渣和矿渣的粒度分布
Fig.1 Particle size distribution of CS and GGBS

图2 铜渣和矿渣的XRD图谱
Fig.2 XRD patterns of CS and GGBS
砂浆水灰比为0.4,CS、GGBS、水玻璃、砂的用量分别为135、315、142、1 350 g.砂浆的制备过程为:首先将铜渣和矿渣混合均匀后,再加入标准砂继续搅拌,最后加入水玻璃、PSRA和水,搅拌均匀后倒入模具中成型.设置PSRA的掺量为0%、0.5%、1.0%、1.5%和2.0%,制备的砂浆分别记为R0(对照组)、S1、S2、S3和S4.
净浆的凝结时间参照GB/T 1346—2011《水泥标准稠度用水量、凝结时间、安定性检验方法》进行测试.水化热采用瑞典雷特拉仪器公司的TAM Air等温量热仪进行测试,测试温度为20 ℃.砂浆抗压强度参照GB∕T 17671—2021《水泥胶砂强度检验方法(ISO法)》进行测试.
干燥收缩率参照JC/T 603—2004《水泥胶砂干湿试验方法》进行测试.将试件1 d的长度记为初始长度L0,养护龄期t时试件实测长度为Lt.试件的干燥收缩率ε计算式为:
(1) |
用压孔溶液法获取不同PSRA掺量下净浆水化3 h的孔溶液,过滤后使用KINO A—601型表面张力仪测试孔溶液表面张力.用压孔溶液法获取不同PSRA掺量下净浆水化3、12和24 h的孔溶液,并使用ICP‑OES电感耦合等离子体发射光谱仪测试孔溶液的离子浓度.用MacroMR12‑150H‑I型核磁共振分析仪进行孔径分布测试.
用RIGAKU KG‑3型X射线衍射仪(XRD)对试件进行物相分析,扫描速率为2(°)/min.采用VEGA TS5130MM Tescan 型扫描电子显微镜(SEM)观察试件的微观形貌.使用Netzsch STA 409C型同步热重-差示量热仪进行热重分析(TG‑DSC),N2气氛,N2的流速为20 mL/min,升温速率为10 ℃/min,测试范围为20~1 000 ℃.
PSRA对净浆凝结时间和水化热的影响见

图3 PSRA对净浆凝结时间和水化热的影响
Fig.3 Effect of PSRA on setting time and hydration heat of pastes
PSRA对CSM抗压强度的影响见

图4 PSRA对CSM抗压强度的影响
Fig.4 Effect of PSRA on compressive strength of CSM
PSRA对CSM干燥收缩率的影响见

图5 PSRA对CSM干燥收缩率的影响
Fig.5 Effect of PSRA on drying shrinkage rate of CSM
PSRA对孔溶液表面张力的影响见
Specimen | R0 | S1 | S2 | S3 | S4 |
---|---|---|---|---|---|
Surface tension/(mN· | 56 | 54 | 50 | 45 | 39 |
孔溶液的离子浓度见

图6 孔溶液的离子浓度
Fig.6 Ion concentrations of pore solution
PSRA对CSM孔径D分布的影响见

图7 PSRA对CSM孔径分布的影响
Fig.7 Effect of PSRA on pore size distribution of CSM
CSM的XRD图谱见

图8 CSM的XRD图谱
Fig.8 XRD patterns of CSM
CSM的SEM照片和EDS能谱见

图9 CSM的SEM照片和EDS能谱
Fig.9 SEM images and EDS spectrum of CSM
试件R0和S4的TG‑DSC曲线见

图10 试件R0和S4的TG‑DSC曲线
Fig.10 TG‑DSC curves of specimen R0 and S4
(1)聚醚型减缩剂(PSRA)的掺入导致矿渣-铜渣净浆的凝结时间延长,延缓了体系的水化进程,且延缓作用随着PSRA掺量的增大而增强.
(2)随着PSRA掺量的增大,矿渣-铜渣砂浆(CSM)抗压强度逐渐下降,PSRA掺量为2%的试件28 d抗压强度仅为64.3 MPa,与对照组试件相比下降了10.32%,主要原因是PSRA的掺入延缓了体系的水化进程,减少了C‑A‑S‑H凝胶生成,导致基体孔隙率升高和孔径增大.
(3)随着PSRA掺量的增加,CSM的180 d干燥收缩率逐渐减小.当掺入2%的PSRA时,CSM的180 d干燥收缩率较对照组降低了42.1%.PSRA的掺入降低了孔溶液的表面张力,并改变了基体孔结构,进而减小了毛细管压力,有效降低了CSM的干燥收缩.
参考文献
朱街禄, 宋军伟, 王露, 等. 铜渣粉-水泥复合胶凝体系的水化热及动力学研究[J]. 建筑材料学报, 2020, 23(6):1282‑1288. [百度学术]
ZHU Jielu, SONG Junwei, WANG Lu, et al. Hydration heat and kinetics of copper slag powder‑cement composite cementitious system[J]. Journal of Building Materials, 2020, 23(6):1282‑1288.(in Chinese) [百度学术]
蒋周, 李鹏, 闫炳基, 等. 基于铜渣制备γ‑Fe2O3及其光催化‑降解性能研究[J]. 中国有色冶金, 2023, 52(4):88‑96. [百度学术]
JIANG Zhou, LI Peng, YAN Bingji, et al. Preparation and photocatalytic‑degradation property of γ‑Fe2O3 based on copper slag[J]. China Nonferrous Metallurgy, 2023, 52(4):88‑96. (in Chinese) [百度学术]
高术杰, 倪文, 李克庆, 等. 用水淬二次镍渣制备矿山充填材料及其水化机理[J]. 硅酸盐学报, 2013, 41(5):612‑619. [百度学术]
GAO Shujie, NI Wen, LI Keqing, et al. Preparation and hydrated mechanism of mine filling material of water‑granulated secondary nickel slag[J]. Journal of the Chinese Ceramic Society, 2013, 41(5):612‑619. (in Chinese) [百度学术]
南雪丽, 杨旭, 张宇, 等. 钢渣-矿渣基胶凝材料协同水化机理研究[J]. 建筑材料学报, 2024, 27(4):366‑374. [百度学术]
NAN Xueli, YANG Xu, ZHANG Yu, et al. Synergistic hydration mechanism of steel slag‑slag based cementitious material[J]. Journal of Building Materials, 2024, 27(4):366‑374. (in Chinese) [百度学术]
王林松, 高志勇, 杨越, 等. 铜渣综合回收利用研究进展[J]. 化工进展, 2021, 40(10):5237‑5250. [百度学术]
WANG Linsong, GAO Zhiyong, YANG Yue, et al. Research progress on comprehensive recovery and utilization of copper slag[J].Chemical Industry and Engineering Progress, 2021, 40(10):5237‑5250. (in Chinese) [百度学术]
SINGH J, SINGH S P. Synthesis of alkali‑activated binder at ambient temperature using copper slag as precursor[J]. Materials Letters, 2020, 262:127169. [百度学术]
SINGH J, SINGH S P. Development of alkali‑activated cementitious material using copper slag[J]. Construction and Building Materials, 2019, 211:73‑79. [百度学术]
XU R S, WANG H R, YANG R H, et al. The potential of copper slag as a precursor for partially substituting blast furnace slag to prepare alkali‑activated materials[J]. Journal of Cleaner Production, 2024, 434:140283. [百度学术]
彭晖, 李一聪, 罗冬, 等. 碱激发偏高岭土/矿渣复合胶凝体系反应水平及影响因素分析[J]. 建筑材料学报, 2020, 23(6):1390‑1397. [百度学术]
PENG Hui, LI Yicong, LUO Dong, et al. Analysis of reaction level and factors of alkali activated metakaolin/GGBFS[J]. Journal of Building Materials, 2020, 23(6):1390‑1397. (in Chinese) [百度学术]
林学智, 赖俊英, 周益帆, 等. 聚醚型两亲分子对水泥净浆收缩的影响及机理[J]. 建筑材料学报, 2024, 27(1):1‑8, 29. [百度学术]
LIN Xuezhi, LAI Junying, ZHOU Yifan, et al. Effects and mechanism of amphiphilic polyether on shrinkage of cement paste[J]. Journal of Building Materials, 2024, 27(1):1‑8, 29. (in Chinese) [百度学术]
杨进, 王发洲, 黄劲, 等. 不同类型减缩剂减缩效果比较分析[J]. 建筑材料学报, 2016, 19(1):53‑58. [百度学术]
YANG Jin, WANG Fazhou, HUANG Jin, et al. Comparative analysis of reduction effects of different shrinkage reducing agents in concrete[J]. Journal of Building Materials, 2016, 19(1):53‑58. (in Chinese) [百度学术]
ZUO W Q, FENG P, ZHONG P H, et al. Effects of novel polymer‑type shrinkage‑reducing admixture on early age autogenous deformation of cement pastes[J]. Cement and Concrete Research, 2017, 100:413‑422. [百度学术]
PALACIOS M, PUERTAS F. Effect of shrinkage‑reducing admixtures on the properties of alkali‑activated slag mortars and pastes[J]. Cement and Concrete Research, 2007, 37(5):691‑702. [百度学术]
HU X, SHI C J, ZHANG Z H, et al. Autogenous and drying shrinkage of alkali‑activated slag mortars[J]. Journal of the American Ceramic Society, 2019, 102(8):4963‑4975. [百度学术]
张文艳, 林华夏, 王帅, 等. 减缩剂对碱激发煤矸石-矿渣胶凝材料性能的影响[J]. 硅酸盐通报, 2022, 41(2):526‑535. [百度学术]
ZHANG Wenyan, LIN Huaxia, WANG Shuai, et al. Effect of shrinkage reducing agent on properties of alkali‑activated coal gangue‑slag cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2):526‑535. (in Chinese) [百度学术]
王俊颜, 庄云芳, 刘菲凡, 等. 减缩剂和PVA纤维对超轻水泥复合材料收缩开裂行为的影响[J]. 建筑材料学报, 2022, 25(7):744‑750. [百度学术]
WANG Junyan, ZHONG Yunfang, LIU Feifan, et al. Effect of shrinkage reduce admixture and pva fiber on shrinkage cracking behaviors of ultra lightweight cement composite[J]. Journal of Building Materials, 2022, 25(7):744‑750. (in Chinese) [百度学术]
AL MAKHADMEH W, SOLIMAN A. On the mechanisms of shrinkage reducing admixture in alkali activated slag binders[J]. Journal of Building Engineering, 2022, 56:104812. [百度学术]
SOLIMAN A, NEHDI M. Effects of shrinkage reducing admixture and wollastonite microfiber on early‑age behavior of ultra‑high performance concrete [J]. Cement and Concrete Composites, 2014, 46:81‑89. [百度学术]
MA H Q, ZHU H G, WU C, et al. Effect of shrinkage reducing admixture on drying shrinkage and durability of alkali‑activated coal gangue‑slag material[J]. Construction and Building Materials, 2021, 270:121372. [百度学术]
龚建清, 罗鸿魁, 张阳, 等. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8):8042‑8048, 8063. [百度学术]
GONG Jianqing, LUO Hongkui, ZHANG Yang, et al. Effect of shrinkage reducing agent and HCSA expansion agent on mechanical properties and shrinkage properties of UHPC[J]. Materials Reports, 2021, 35(8):8042‑8048, 8063. (in Chinese) [百度学术]
LIU J H, SHI C J, FARZADNIA N, et al. Effects of pretreated fine lightweight aggregate on shrinkage and pore structure of ultra‑high strength concrete[J]. Construction and Building Materials, 2019, 204:276‑287. [百度学术]
ZHANG T T, JIN H L, GUO L J, et al. Mechanism of alkali‑activated copper‑nickel slag material[J]. Advances in Civil Engineering, 2020, 2020:7615848. [百度学术]
QU Z Y, YU Q L, JI Y D, et al. Mitigating shrinkage of alkali activated slag with biofilm[J]. Cement and Concrete Research, 2020, 138:106234. [百度学术]
LOPEZ T, BOSCH P, ASOMOZA M, et al. DTA‑TGA and FTIR spectroscopies of sol‑gel hydrotalcites:Aluminum source effect on physicochemical properties[J]. Materials Letters, 1997, 31(3‑6):311‑316. [百度学术]
LUO S Q, ZHAO M H, JIANG Z Z, et al. Microwave preparation and carbonation properties of low‑carbon cement[J]. Construction and Building Materials, 2022, 320:126239. [百度学术]