摘要
采用SiO2气凝胶改性地聚合物,分析了矿渣掺量和气凝胶掺量对抗压强度、尺寸稳定性、失水量以及微观结构的影响,为解决地聚合物干燥收缩问题提供指导.结果表明:由于气凝胶保水作用,矿渣掺量较低的试件28 d强度提升较大;矿渣掺量为30%时,气凝胶掺量越高,试件尺寸稳定性越强;试件7 d内失水量远大于7 d后,且随着气凝胶掺量的增加,矿渣掺量较低的试件失水量先减少后增加,而矿渣掺量较高的试件失水量先增加后减少;当矿渣掺量为30%、气凝胶掺量为8%时,试件微观结构最为致密.
与水泥相比,地聚合物具有较低的能源消耗和CO2排
近年来,国内外学者对地聚合物干燥收缩进行了系列研究.Yang
SiO2气凝胶具有三维网络结构,且孔隙率极
矿渣(S95级)来自河北石航建材有限公司,粉煤灰(F级)来自巩义市元亨净水材料厂,两者的化学组
Material | CaO | SiO2 | Al2O3 | MgO | K2O | Fe2O3 |
---|---|---|---|---|---|---|
Slag | 42.73 | 32.93 | 14.47 | 6.59 | 0.48 | 0.24 |
Fly ash | 2.67 | 50.51 | 31.53 | 0.60 | 6.65 |
Bulk density/ (kg· | Grain size/ mm | Porosity(by volume)/% | Specific surface area/ ( | Pore range/ nm | Thermal conductivity/ (W· |
---|---|---|---|---|---|
40 | 0.1-5.0 | >90 | 800-1 000 | 20-40 | 0.018 |
首先,选取适量矿渣和粉煤灰为原材料,在水胶比为0.48,碱掺量(激发剂中Na2O与原材料的质量比)为16%条件下,制备地聚合
Specimen | SiO2 aerogel | Fly ash | Slag | Water glass | NaOH | Water |
---|---|---|---|---|---|---|
1 | 0 | 90.0 | 10.0 | 22.5 | 10.0 | 48.0 |
2 | 4.0 | 90.0 | 10.0 | 22.5 | 10.0 | 48.0 |
3 | 8.0 | 90.0 | 10.0 | 22.5 | 10.0 | 48.0 |
4 | 12.0 | 90.0 | 10.0 | 22.5 | 10.0 | 48.0 |
5 | 0 | 70.0 | 30.0 | 22.5 | 10.0 | 48.0 |
6 | 4.0 | 70.0 | 30.0 | 22.5 | 10.0 | 48.0 |
7 | 8.0 | 70.0 | 30.0 | 22.5 | 10.0 | 48.0 |
8 | 12.0 | 70.0 | 30.0 | 22.5 | 10.0 | 48.0 |
9 | 0 | 50.0 | 50.0 | 22.5 | 10.0 | 48.0 |
10 | 4.0 | 50.0 | 50.0 | 22.5 | 10.0 | 48.0 |
11 | 8.0 | 50.0 | 50.0 | 22.5 | 10.0 | 48.0 |
12 | 12.0 | 50.0 | 50.0 | 22.5 | 10.0 | 48.0 |
试件制备过程:(1)将矿渣和粉煤灰倒入搅拌机中低速搅拌均匀,加入激发剂先低速搅拌1~2 min后高速搅拌3~5 min;再加入SiO2气凝胶,低速搅拌1~2 min后高速搅拌直至混合均匀;注入尺寸为25 mm×25 mm×280 mm的干燥收缩试件模具和40 mm×40 mm×160 mm的强度测试试件模具,振实.(2)将试件放入标准养护箱中,24 h后取出脱模,并用游标卡尺测量干燥收缩试件的初始长度.(3)将干燥收缩试件安装至比长仪,与强度测试试件一起放入干燥养护箱内(22~24 ℃,相对湿度49%~51%),一定龄期后进行测试.
干燥收缩参照GB/T 29417—2012《水泥砂浆和混凝土干燥收缩开裂性能试验方法》测试.抗压强度参照GB/T 17671—2021《水泥胶砂强度检验方法(ISO法)》测试.失水量通过对干燥收缩试件进行追踪称重测定,以质量日损失量表示.微观结构采用蔡司SIGMA500扫描电子显微镜(SEM)观察.

图1 试件的抗压强度
Fig.1 Compressive strength of specimens

图2 试件的长度变化率
Fig.2 Length change rate of specimens

图3 7 d内试件的质量日损失量
Fig.3 Daily mass loss of specimens within 7 d

图4 7 d后试件的质量日损失量
Fig.4 Daily mass loss of specimens after 7 d
由上述性能分析可知,当SiO2气凝胶掺量为8%时,试件性能最为优越,因此后文重点讨论参照组和添加8%SiO2气凝胶试件的微观结构.图

图5 未添加SiO2气凝胶试件1 d的微观图像
Fig.5 Microscopic images of specimens without SiO2 aerogel at 1 d

图6 添加8% SiO2气凝胶试件1 d的微观图像
Fig.6 Microscopic images of specimens with 8% SiO2 aerogel at 1 d

图7 未添加SiO2气凝胶试件28 d的微观图像
Fig.7 Microscopic images of specimens without SiO2 aerogel at 28 d

图8 添加8%SiO2气凝胶试件28 d的微观图像
Fig.8 Microscopic images of specimens with 8% SiO2 aerogel at 28 d
(1)当矿渣掺量较低时,SiO2气凝胶主要发挥保水作用,原材料继续发生水化反应,试件28 d抗压强度提升较大.当矿渣掺量较高时,气凝胶的影响减弱,产生较多微裂纹,试件28 d抗压强度降低.当矿渣掺量为30%时,随着气凝胶掺量的增加,试件长度变化率降低,尺寸稳定性增强.
(2)随着龄期的增长,试件7 d内失水量远大于7 d后.随着气凝胶掺量的增加,当矿渣掺量较低时试件失水量先减少后增加,当矿渣掺量较高时试件失水量先增加后减少.
(3)在28 d龄期下未添加气凝胶试件内部均存在微裂纹,且矿渣掺量越高,试件内部微裂纹越多.当矿渣掺量为30%,气凝胶掺量为8%时,气凝胶既促进凝胶生成也能发挥保水作用,试件微观结构最为致密.
参考文献
LUHAR S, CHENG T W, NICOLAIDES D, et al. Valorisation of glass wastes for the development of geopolymer composites‑ Durability, thermal and microstructural properties:A review[J]. Construction and Building Materials, 2019, 222:673‑687. [百度学术]
万小梅, 刘杰, 朱亚光, 等. 粉煤灰用量和早期养护温度对EGC拉伸性能的影响[J]. 建筑材料学报, 2022, 25(4):401‑407. [百度学术]
WAN Xiaomei, LIU Jie, ZHU Yaguang, et al. Influence of fly ash content and early curing temperature on tensile performance of EGC[J]. Journal of Building Materials, 2022, 25(4):401‑407. (in Chinese) [百度学术]
FENG B W, LIU J S, CHEN Y H, et al. Properties and microstructure of self‑waterproof metakaolin geopolymer with silane coupling agents[J]. Construction and Building Materials, 2022, 342:128045. [百度学术]
阚黎黎, 王文松, 王家豪, 等. 高延性偏高岭土-粉煤灰基地聚合物的制备及拉伸性能[J]. 建筑材料学报, 2019, 22(5):673‑679,699. [百度学术]
KAN Lili, WANG Wensong, WANG Jiahao, et al. Preparation and tensile property of metakaolin‑fly ash based engineered geopolymer composites[J]. Journal of Building Materials, 2019, 22(5):673‑679, 699. (in Chinese) [百度学术]
YANG T, ZHU H J, ZHANG Z H. Influence of fly ash on the pore structure and shrinkage characteristics of metakaolin‑based geopolymer pastes and mortars[J]. Construction and Building Materials, 2017, 153:284‑293. [百度学术]
LI Z H, ZHANG W, WANG R L, et al. Effects of reactive MgO on the reaction process of geopolymer[J]. Materials, 2019, 12(3):526. [百度学术]
PUNURAI W, KROEHONG W, SAPTAMONGKOL A, et al. Mechanical properties, microstructure and drying shrinkage of hybrid fly ash‑basalt fiber geopolymer paste[J]. Construction and Building Materials, 2018, 186:62‑70. [百度学术]
MALEKI H, DURAES L, PORTUGAL A. An overview on silica aerogels synthesis and different mechanical reinforcing strategies[J]. Journal of Non‑Crystalline Solids, 2014, 385:55‑74. [百度学术]
牛海华, 马彬,黄启钦,等. 纳米SiO2气凝胶改性钙基地聚合物的性能及微观结构[J]. 材料科学与工程学报, 2023, 41(1):119‑125. [百度学术]
NIU Haihua, MA Bin, HUANG Qiqin, et al. Properties and microstructure of calcium‑based geopolymer modified by nano‑SiO2 aerogel[J]. Journal of Materials Science and Engineering, 2023, 41(1):119‑125. (in Chinese) [百度学术]
马彬, 衣兆林, 牛海华, 等. 高温下SiO2气凝胶改性地聚合物的物理力学性能研究[J]. 材料导报, 2023, 37(10):241‑246. [百度学术]
MA Bin, YI Zhaolin, NIU Haihua, et al. Physical and mechanical properties of SiO2 aerogel modified geopolymer at high temperature[J]. Materials Reports, 2023, 37(10):241‑246. (in Chinese). [百度学术]
刘鑫, 彭泽川, 潘晨豪, 等. 纳米二氧化硅改性粉煤灰地聚合物力学性能及微观分析[J]. 材料导报, 2020, 34(22):22078‑22082. [百度学术]
LIU Xin, PENG Zechuan, PAN Chenhao, et al. Mechanical properties and microscopic analysis of nano‑silica modified fly ash geopolymer[J]. Materials Reports, 2020, 34(22):22078‑22082. (in Chinese) [百度学术]
GARCIA‑LODEIRO I, PALOMO A, FERNANDEZ‑JIMENEZ A, et al. Compatibility studies between N‑A‑S‑H and C‑A‑S‑H gels. Study in the ternary diagram Na2O‑CaO‑Al2O3‑SiO2‑H2O[J]. Cement and Concrete Research, 2011, 41(9):923‑931. [百度学术]
CONG T D, PHUONG T, VU M T, et al. Effect of calcium hydroxide on compressive strength and microstructure of geopolymer containing admixture of kaolin, fly ash, and red mud[J]. Applied Sciences‑Basel, 2023, 13(8):5034. [百度学术]
FANG G H, BAHRAMI H, ZHANG M Z. Mechanisms of autogenous shrinkage of alkali‑activated fly ash‑slag pastes cured at ambient temperature within 24 h[J]. Construction and Building Materials, 2018, 171:377‑387. [百度学术]
MA Y, YE G. The shrinkage of alkali activated fly ash[J]. Cement and Concrete Research, 2015, 68:75‑82. [百度学术]
WANG J B, CHENG Y, YUAN L W, et al. Effect of nano‑silica on chemical and volume shrinkage of cement‑based composites[J]. Construction and Building Materials, 2020, 247:118529. [百度学术]
LUO Z Y, LI W G, GAN Y X, et al. Nanoindentation on micromechanical properties and microstructure of geopolymer with nano‑SiO2 and nano‑TiO2[J].Cement and Concrete Composites, 2021, 117:103883. [百度学术]
王晴, 康升荣, 吴丽梅, 等. 地聚合物凝胶体系中N‑A‑S‑H和C‑A‑S‑H结构的分子模拟[J]. 建筑材料学报, 2020, 23(1):184‑191. [百度学术]
WANG Qing, KANG Shengrong, WU Limei, et al. Molecular simulation of N‑A‑S‑H and C‑A‑S‑H in geopolymer cementitious system[J]. Journal of Building Materials, 2020, 23(1):184‑191. (in Chinese) [百度学术]
ASSAEDI H, ALOMAYRI T, SHAIKH F, et al. Influence of nano silica particles on durability of flax fabric reinforced geopolymer composites[J]. Materials, 2019, 12(9):1459. [百度学术]
ZHOU X X, SHEN J M. Micromorphology and microstructure of coal fly ash and furnace bottom slag based light‑weight geopolymer[J]. Construction and Building Materials, 2020, 242:118168. [百度学术]
汪其堃, 马思齐, 阳华龙, 等. 铝硅酸盐聚合物聚合机理与动力学研究进展[J]. 硅酸盐学报, 2022, 50(9):2551‑2566. [百度学术]
WANG Qikun, MA Siqi, YANG Hualong, et al. Recent development on geopolymerization mechanism and geopolymerization kinetics of geopolymers[J]. Bulletin of the Chinese Ceramic Society, 2022, 50(9):2551‑2566. (in Chinese) [百度学术]