摘要
采用强度试验、X射线衍射仪和综合热分析仪等手段,研究了低气压对水泥基材料性能及水化进程的影响.结果表明:低养护气压延缓了水泥水化进程,水化产物生成量减小,且养护气压越低,影响效果越显著,3~7 d龄期时出现明显的水化平台期;低养护气压下水泥基材料孔隙结构劣化,凝胶孔占比增长幅度最大;养护气压越低,水泥基材料吸水速率越快,吸水量越大;水泥基材料的吸水量、吸水速率及相对吸水率均随着环境气压的降低明显减小.
青藏高原地区平均海拔4 500 m,环境气压和温湿度均与内陆地区存在明显差异.高原地区特殊的气候环境对水泥基材料的微观结构与宏观力学特性产生了严重的影
水泥基材料宏观和微观性能改变的根本原因是水泥水化进程的差异.Liu
综上,目前关于低气压对水泥基材料宏观和微观性能影响的研究没有统一定论,且影响机理研究尚不多见.为此,本文研究了低气压下水泥基材料水化进程及其性能的演化规律,从多个尺度揭示低气压下水泥基材料性能的劣化机理.
普通硅酸盐水泥为诸城市杨春水泥有限公司生产的P·O 42.5水泥,其化学组成(质量分数,文中涉及的组成、比值等均为质量分数或质量比)见
SiO2 | Al2O3 | CaO | MgO | Fe2O3 | SO3 | IL |
---|---|---|---|---|---|---|
24.99 | 8.26 | 51.42 | 3.71 | 4.03 | 2.51 | 3.31 |
依据GB/T 17671—2021《水泥胶砂强度检验方法(ISO法)》制备水泥净浆(PJ)与水泥砂浆(PS),净浆和砂浆的水泥、水、砂的质量比分别为1.00∶0.40∶0、1.00∶0.40∶1.83.设置养护气压P为101、70、50 kPa,制得的净浆试件和砂浆试件分别记为PJ‑101、PJ‑70、PJ‑50、PS‑101、PS‑70、PS‑50.为防止处于流动状态的试件由于外部气压突然改变而带来的体积膨胀导致试验结果脱离实际,将试件脱模后再转入不同养护气压下继续养护至3、7、28 d.低养护气压通过自制低气压环境箱进行模拟,箱内温度为(20±5) ℃、相对湿度RH为95%.试件制备及养护过程见

图1 试件制备及养护过程
Fig.1 Preparation and curing process of specimens
用水泥净浆测试不同龄期水泥水化产物及水化进程.用水泥砂浆测试不同龄期下的力学性能、孔隙特征及毛细吸水性能.
根据GB/T 17671—2021测试不同龄期水泥砂浆的抗压强度及抗折强度.将破碎试件采用无水乙醇浸泡2 d以中止水化,然后在40 ℃下烘至恒重,烘干后的样品用玛瑙研钵进行研磨并过75 µm筛备用.用D8 Advance X射线衍射仪(XRD)分析水化产物,扫描范围为5°~80°,扫描速率为4 (°)/min.热重分析-差示扫描量热(TG‑DSC)采用METTLER TOLEDO TGA/DSC‑1综合热分析仪进行测试,粉末置于氧化铝坩埚中,测试温度范围为30~1 000 ℃,升温速率为10 ℃/min,氮气气氛.孔隙特征分析取水泥砂浆试件中心部位40 mm×40 mm×40 mm,-0.1 MPa下进行真空饱水后备用.采用MesoMR23‑060H‑I核磁共振成像分析仪进行测试,共振频率为23 MHz,磁体强度为0.5 T,线圈直径为60 mm,磁体温度为32 ℃.试件的T2谱采用Carr‑Purcell‑Meiboom‑Gill(CPMG)序列测定.
毛细吸水性分析参照ASTM C1585‑13 Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic‑Cement Concretes,选取40 mm×40 mm×40 mm的水泥砂浆试件,每3个试件为1组,将其置于低气压模拟箱中,在不同环境气压PE下开展一维吸水试验,测试7 d内试件在不同吸水时间t的质量变化.假设试件孔隙结构在试验过程中不发生改变,其在t时的吸水量I(g/c
(1) |
(2) |
式中:mt为试件t时的吸收水的质量,g;A为吸水面积,c
不同养护气压下水泥砂浆的抗压及抗折强度见

图2 不同养护气压下水泥砂浆的抗压及抗折强度
Fig.2 Compressive and flexural strength of cement mortars under different curing atmospheric pressures
不同养护气压下水泥净浆的XRD图谱见

图3 不同养护气压下水泥净浆的XRD图谱
Fig.3 XRD patterns of cement pastes under different curing atmospheric pressures
不同养护气压下水泥净浆的TG‑DSC曲线见

图4 不同养护气压下水泥净浆的TG‑DSC曲线
Fig.4 TG‑DSC curves of cement pastes under different curing atmospheric pressures
根据水泥净浆在30~350 ℃的失重量,计算不同养护气压下水泥净浆结合水的含量
Age/d | PJ‑101 | PJ‑70 | PJ‑50 |
---|---|---|---|
3 | 9.53 | 10.08 | 9.85 |
7 | 11.55 | 10.82 | 10.65 |
28 | 14.24 | 13.51 | 12.80 |
根据孔径D可将孔隙分为凝胶孔(D<10 nm)、过渡孔(10 nm≤D<100 nm)、毛细孔(100 nm≤D<1 000 nm)及大孔(D≥1 000 nm

图5 不同养护气压下水泥砂浆的孔隙分布及占比
Fig.5 Pore size distribution and proportion of cement mortars under different curing atmospheric pressures
不同环境气压下水泥砂浆的毛细吸水性能见

图6 不同环境气压下水泥砂浆的毛细吸水性能
Fig.6 Capillary water absorption property of cement mortars under different curing atmospheric pressures
水泥基材料内部孔隙可分为两端连通、单侧封闭及全封闭3类.对于两端连通的毛细管来说,当达到平衡时,液面不再上升.由于两端连通的毛细管内外气压相等,毛细水的迁移与大气压力无关,仅与重力有关.此时毛细水的上升高度H为:
(3) |
式中:γ为表面张力;δE为内壁接触角;g为重力加速度;R为毛细管内径.
对于单侧封闭的毛细管来说,其内外气压不相等,毛细水迁移现象也因此受到明显影响.假定毛细管内部气压为定值,简化后毛细管内水分迁移现象示意图见
(4) |

图7 不同环境气压下单侧封闭毛细管内水分迁移现象示意图
Fig.7 Water migration in unilateral closed capillary under different environmental atmospheric pressures
其他条件不变的情况下,低环境气压(LAP)下毛细管内部液面处A点的压强PA为:
(5) |
式中:PA1.0、PA0.7和PA0.5分别为环境气压为101、70、50 kPa下毛细管内部液面处A点的压强.
随着环境气压的降低,液面处A点的压强PA也随之减小,气压对水分迁移的贡献减弱,因此表现出水分迁移速率变慢、吸水量减小的现象.此外,低养护气压下水泥基材料内部各尺寸孔隙均有劣化,孔隙连通性及单侧封闭孔数量增加,因此其达到饱和时所需时间明显滞后.
由

图8 不同环境气压下试件PS‑101的相对吸水率
Fig.8 Relative water absorption of specimen PS‑101 under different environmental atmospheric pressures
基于不同环境气压下水泥砂浆毛细吸水性能的试验结果,低环境气压下水泥基材料吸水量与吸水时间的关系可以表示为
(6) |
(7) |
式中:S为吸水率;θ为饱和度.
对于水灰比为0.4的水泥砂浆,当环境气压为70、50 kPa时,k值分别约为0.59、0.46.这表明在70 、50 kPa环境气压下分别需要大约2.87、4.73 d才能吸收与常压环境下(101 kPa)在1.00 d的吸水量相同.由此也很好地说明了低环境气压下水泥基材料水化进程滞后的主要原因.此外,可基于常压环境下水泥基材料的短期吸水行为来粗略预测低环境气压下水泥基材料的长期吸水行为,这对高原地区工程的实际应用和室内测量具有较高的理论和实际价值.
(1)低养护气压延缓了水泥水化进程,水泥基材料力学强度增长区间明显滞后,在3~7 d龄期时出现明显的水化平台期,且养护气压越低,影响效果越明显.水泥基材料力学强度、主要水化产物的生成量及生成速率均随养护气压降低而显著减小.
(2)C‑S‑H生成量在低养护气压下显著降低,孔隙之间连通性相应增加,使得孔隙结构产生劣化,其中凝胶孔数量随养护气压降低而增长幅度最大.
(3)低环境气压会加速水泥基材料内部水分散失,孔隙内液面处压强PA随环境气压降低而减小,环境气压对水分迁移的贡献减弱,因此表现出吸水速率变慢、吸水量减小的现象,环境气压越低影响效果越显著.
(4)水泥基材料的相对吸水率k为与吸水量无关的恒定值,且随环境气压降低而减小.在不间断一维吸水情况下,要达到相同的吸水量,低气压环境下所需吸水时间为常压环境下的
参考文献
李林, 叶铜, 刘状壮. 低气压养护对水泥砂浆微观孔隙及抗渗性能的影响[J]. 建筑材料学报, 2023, 26(8):823‑830. [百度学术]
LI Lin, YE Tong, LIU Zhuangzhuang. Effect of low air pressure curing on micropore structure and impermeability of cement mortar[J]. Journal of Building Materials, 2023, 26(8):823‑830. (in Chinese) [百度学术]
李雪峰, 付智. 低气压环境对混凝土含气量及气泡稳定性的影响[J]. 硅酸盐学报, 2015, 43(8):1076‑1082. [百度学术]
LI Xuefeng, FU Zhi. Effect of low‑pressure of environment on air content and bubble stability of concrete[J]. Journal of the Chinese Ceramic Society, 2015, 43(8):1076‑1082. (in Chinese) [百度学术]
VAN LANDEGHEM M, D'ESPINOSE DE LACAILLERIE J B, BLÜMICH B, et al. The roles of hydration and evaporation during the drying of a cement paste by localized NMR [J]. Cement and Concrete Research, 2013, 48:86‑96. [百度学术]
ZENG X H, LAN X L, ZHU H S, et al. Investigation on air‑voids structure and compressive strength of concrete at low atmospheric pressure [J]. Cement and Concrete Composites, 2021, 122:104139. [百度学术]
GE X, GE Y, LI Q F, et al. Effect of low air pressure on the durability of concrete[J]. Construction and Building Materials, 2018, 187:830‑838. [百度学术]
SHI Y, YANG H Q, ZHOU S H, et al. Effect of atmospheric pressure on performance of AEA and air entraining concrete [J]. Advances in Materials Science and Engineering, 2018, 2018:6528412. [百度学术]
何锐, 王铜, 陈华鑫, 等. 青藏高原气候环境对混凝土强度和抗渗性的影响[J]. 中国公路学报, 2020, 33(7):29‑41. [百度学术]
HE Rui, WANG Tong, CHEN Huaxin, et al. Impact of Qinghai‑Tibet plateau’s climate on strength and permeability of concrete [J]. China Journal of Highway and Transport, 2020, 33(7):29‑41. (in Chinese) [百度学术]
李扬, 王振地, 薛成, 等. 高原低气压对道路工程混凝土性能的影响及原因[J]. 中国公路学报, 2021, 34(9):194‑202. [百度学术]
LI Yang, WANG Zhendi, XUE Cheng, et al. Influnce of low air pressure on the preformance of concrete in road engineering [J]. China Journal of Highway and Transport, 2021, 34(9):194‑202. (in Chinese) [百度学术]
李立辉, 陈歆, 田波, 等. 大气压强对混凝土引气剂引气效果的影响[J]. 建筑材料学报, 2021, 24(4):866‑873. [百度学术]
LI Lihui, CHEN Xin, TIAN Bo, et al. Effect of atmospheric pressure on air‑entraining performance of air‑entraining agent of concrete[J]. Journal of Building Materials, 2021, 24(4):866‑873. (in Chinese) [百度学术]
杜振兴, 佘伟, 左文强, 等. 高原低气压环境对引气砂浆孔结构的影响机理[J]. 硅酸盐学报, 2023, 51(5):1174‑1180. [百度学术]
DU Zhenxing, SHE Wei, ZUO Wenqiang, et al. Mechanism of influence of low atmosphere pressure on pore structure of air‑entraining mortar in plateau region[J]. Journal of the Chinese Ceramic Society, 2023, 51(5):1174‑1180. (in Chinese) [百度学术]
刘旭, 陈歆, 李立辉, 等. 负压成型水泥基材料孔结构特征[J]. 哈尔滨工业大学学报, 2021, 53(9):26‑33. [百度学术]
LIU Xu, CHEN Xin, LI Lihui, et al. Characterization of pore structure of cement‑based materials produced in negative pressure[J]. Journal of Harbin Institute of Technology, 2021, 53(9):26‑33. (in Chinese) [百度学术]
LAN X L, ZENG X H, ZHU H S, et al. Experimental investigation on fractal characteristics of pores in air‑entrained concrete at low atmospheric pressure [J]. Cement and Concrete Composites, 2022, 130:104509. [百度学术]
LIU Z Z, LOU B W, SHA A M, et al. Microstructure characterization of Portland cement pastes influenced by lower curing pressures [J]. Construction and Building Materials, 2019, 227:116636. [百度学术]
左胜浩, 元强, 黄庭杰, 等. 低气压环境下硬化水泥浆体的水分传输特性[J]. 硅酸盐学报, 2023, 51(5):1104‑1114. [百度学术]
ZUO Shenghao, YUAN Qiang, HUANG Tingjie, et al. Moisture transfer characteristics of hardened cement pastes in low air pressure [J]. Journal of the Chinese Ceramic Society, 2023, 51(5):1104‑1114. (in Chinese) [百度学术]
CHEN X, LIU X, LI L H, et al. Hydration and pore structure of non‑airentrained cement‑based materials prepared under low air pressure [J]. Materials Reports, 2022, 36(12):20100140. [百度学术]
关虓, 张鹏鑫, 邱继生, 等. 冻融环境下活化煤矸石粉混凝土毛细吸水性能[J]. 建筑材料学报, 2023, 26(5):483‑491. [百度学术]
GUAN Xiao, ZHANG Pengxin, QIU Jisheng, et al. Capillary water absorption properties of activated coal gangue powder concrete in freeze‑thaw environment[J]. Journal of Building Materials, 2023, 26(5):483‑491. (in Chinese) [百度学术]
王俊洁, 薛善彬, 张鹏, 等. 引气剂对冻融循环前后砂浆毛细吸水规律的影响[J]. 建筑材料学报, 2022, 25(10):1007‑1014. [百度学术]
WANG Junjie, XUE Shanbin, ZHANG Peng, et al. Effect of air entraining agent on capillary water absorption of mortar before and after freeze‑thaw cycle[J]. Journal of Building Materials, 2022, 25(10):1007‑1014. (in Chinese) [百度学术]
MO Z Y, WANG R, GAO X J. Hydration and mechanical properties of UHPC matrix containing limestone and different levels of metakaolin [J]. Construction and Building Materials, 2020, 256:119454. [百度学术]
QIN Y, HILLER J E. Water availability near the surface dominates the evaporation of pervious concrete [J]. Construction and Building Materials, 2016, 111:77‑84. [百度学术]
宋国壮, 王连俊, 张艳荣, 等. 多外加剂对硬化水泥浆体强度及水化特征的影响[J]. 建筑材料学报, 2018, 21(4):529‑535. [百度学术]
SONG Guozhuang, WANG Lianjun, ZHANG Yanrong, et al. Influence of chemical admixture systems on strength and hydration characteristics of hardened cement paste[J]. Journal of Building Materials, 2018, 21(4):529‑535. (in Chinese) [百度学术]
JIN S S, ZHANG J X, HAN S. Fractal analysis of relation between strength and pore structure of hardened mortar [J]. Construction and Building Materials, 2017, 135:1‑7. [百度学术]