摘要
采用X射线衍射、热重分析、核磁共振和压汞法,研究了饱和度对以水玻璃为激发剂的碱矿渣砂浆(ASm)抗碳化性能的影响.结果表明,随着饱和度的降低,水化硅(铝)酸钙(C‑(A)‑S‑H)凝胶脱钙更严重,ASm总孔隙率增大,最可几孔径增加,碳化生成的亚稳态文石和球霰石增多,ASm抗碳化性能变差,抗压强度保留率降幅和碳化深度增幅降低.
关键词
与传统水泥基材料相比,碱激发胶凝材料具有性能优异、能耗低和原材料来源广泛等优点,目前已成为建筑材料领域的研究热
增大矿渣细度,提高矿渣中的镁含量、水玻璃模数和碱当量,以及采用热养护均有助于提高AAS的抗碳化性
本文采用X射线衍射(XRD)、热重分析(TG‑DTG)、核磁共振(NMR)和压汞法(MIP),研究了饱和度SD对ASm抗碳化性能的影响,以期为碱激发水泥基材料的推广应用提供依据.
S95矿渣粉来自福建润鑫建材有限公司,其化学组成(质量分数,文中涉及的组成、比值等除特殊说明外均为质量分数或质量比)见
CaO | SiO2 | Al2O3 | MgO | TiO2 |
---|---|---|---|---|
34.29 | 35.74 | 16.45 | 9.44 | 0.60 |
NaOH | Primary water glass | Standard sand | Slag | Water |
---|---|---|---|---|
17.87 | 122.29 | 1 313.00 | 600.00 | 179.00 |
将浆体浇筑在40 mm×40 mm×160 mm的模具内,置于(20±2)℃、相对湿度RH=(65±5)%下养护24 h后,将试件放入饱和Ca(OH)2溶液的恒温水浴中养护28 d,记录饱和试件的质量mS.将试件四面密封,放入50 ℃干燥鼓风烘箱中烘干至恒重,记录完全干燥的样品质量md.将ASm的质量m与干燥时间绘制成曲线,得到

图1 ASm质量随干燥时间的变化曲线
Fig.1 Variation of ASm mass with drying time
(1) |
用电工胶带将达到目标饱和度的试件密封,放入50 ℃的烘箱内进行水分重分布,并保证水分重分布时间不少于水分散失时间的1.5倍,使水分在试件内均匀分

图2 ASm表面相对湿度与饱和度的关系
Fig.2 Relationship between surface RH and saturation of ASm
采用GB∕T 17671—2021《水泥胶砂强度检验方法(ISO法)》测试ASm碳化时间为0、3、7、28 d的抗压强度.抗压强度保留率RC计算式为:
(2) |
式中:fcn、fcf分别为碳化后和未碳化试件的抗压强度.
碳化深度的测试方法参照GB/T 50082—2019《普通混凝土长期性能和耐久性能试验方法标准》,碳化箱温度为(20±2)℃,CO2质量分数为20%,由
对NCM和碳化28 d饱和度分别为50%、70%、90%的试件进行微观测试.XRD采用Panalytical生产的X’Pert Pro‑MPD型 X射线衍射仪进行测试;TG‑DTG采用耐驰STA449F5型同步热分析仪进行测试;NMR采用瑞士Bruker公司生产的AVANCE Ⅲ 600型全数字化核磁共振波谱仪,MASVTN探头为4 mm,磁体为Ultra Shield Plus SB (54 mm)、11.7 T磁场、500 MHz,射频通道为H‑100W和X‑300W,在7 kHz自旋速率的条件下记
ASm的抗压强度及其保留率随碳化时间的变化见

图3 ASm的抗压强度及其保留率随碳化时间的变化
Fig.3 Variation of compressive strength and its retention of ASm with carbonization time
不同饱和度下ASm碳化深度随碳化时间的变化见

图4 不同饱和度下ASm碳化深度随碳化时间的变化
Fig.4 Variation of carbonization depth of ASm with carbonization time under different saturation degree
ASm的XRD图谱见

图5 ASm的XRD图谱
Fig.5 XRD patterns of ASm(tc=28 d)
ASm的TG‑DTG曲线见

图6 ASm的TG‑DTG曲线
Fig.6 TG‑DTG curves of ASm (tc=28 d)
ASm

图7 ASm
Fig.7
29Si NMR去卷积分析计算结果及C‑(A‑)S‑H平均链长Lmean见
Specimen | I( | I( | I( | I( | I( | I( | I( | I( | I( | Lmean |
---|---|---|---|---|---|---|---|---|---|---|
NCM | 8.53 | 8.51 | 14.04 | 29.25 | 14.91 | 5.35 | 10.37 | |||
CM‑90 | 5.94 | 8.36 | 11.73 | 7.86 | 12.68 | 11.48 | 13.93 | 13.74 | 13.26 | 6.17 |
CM‑70 | 5.41 | 8.45 | 11.22 | 7.50 | 12.96 | 13.79 | 15.88 | 15.77 | 14.49 | 6.32 |
CM‑50 | 6.49 | 8.13 | 6.33 | 6.74 | 9.43 | 14.06 | 15.96 | 17.86 | 15.01 | 8.17 |
ASm

图8 ASm
Fig.8
不同饱和度下ASm的累计孔体积和孔径d分布见

图9 不同饱和度下ASm的累计孔体积和孔径分布
Fig.9 Cumulative pore volume and pore size distribution of ASm with different saturation degree(tc=28 d)
Specimen | Total porosity(by volume)/% | Effective porosity(by volume)/% | Average pore size/nm | Medium pore size/nm | Most probable pore size/nm | Pore size distribution/% | ||
---|---|---|---|---|---|---|---|---|
50 nm | 50 nm≤100 nm | d100 nm | ||||||
CM‑90 | 9.56 | 3.99 | 10.01 | 4.85 | 4.85 | 5.08 | 0.11 | 4.37 |
CM‑70 | 10.53 | 4.75 | 10.27 | 5.74 | 5.74 | 6.20 | 0.06 | 4.27 |
CM‑50 | 12.06 | 5.32 | 12.70 | 6.13 | 6.12 | 6.59 | 0.38 | 5.09 |
CO2有效扩散系数Dg对ASm的抗碳化性能起到决定性作用.Dg越大,CO2在ASm孔隙内的传输速率越快,ASm的抗碳化性能越差.ASm的Dg计算
(3) |
式中:为总孔隙率;Ω为孔结构弯折度;为未饱和孔的平均孔径;为未饱和孔径上的水膜厚度;n为未饱和孔介质中的阻滞因子,取n=6;λ是CO2分子平均自由程,取λ=45 nm;CO2基础扩散系数.
对不同饱和度下未碳化ASm的CO2有效扩散系数Dg、最大饱水直径dp及Knudsen扩散孔占比ɛ2进行计算,结果见

图10 不同饱和度下未碳化ASm的CO2有效扩散系数、最大饱水直径及Knudsen扩散孔占比
Fig.10 Dg, dp and ɛ2 of uncarbonated ASm with different saturation degree
(1)随着饱和度的降低,ASm的CO2渗透性增大,C‑(A‑)S‑H凝胶的脱钙更严重,碳化产物更多的是亚稳态文石和球霰石,碳化后ASm的总孔隙率增大,最可几孔径增加,使得ASm在不同碳化时间下的抗压强度及强度保留率降低.当饱和度从90%下降至70%时,ASm的抗压强度保留率降低了10.1%;当饱和度从70%下降至50%时,ASm的抗压强度保留率降低了1.4%.随着饱和度的降低,ASm抗压强度保留率降幅减小.
(2)饱和度越低,ASm的最大饱水直径越小,孔结构内部更难以形成连续的水通道,CO2有效扩散系数Dg增大,ASm的碳化深度增大,抗碳化性能降低.90%饱和度下ASm的碳化深度在不同碳化时间均明显低于70%饱和度,50%和70%饱和度ASm的碳化深度在碳化0~3 d时较为接近,在3~28 d差值逐渐增大.随着饱和度的降低,ASm碳化深度增幅降低.
参考文献
LI F P, LU Y Y, LIU Z Z, et al. Reverse‑diffusion phenomenon of high ductility fly ash‑based geopolymer against carbonation[J]. Ceramics International, 2023, 49(17):28954‑28964. [百度学术]
MEI K Y, GU T, ZHENG Y Z, et al. Effectiveness and microstructure change of alkali‑activated materials during accelerated carbonation curing[J]. Construction and Building Materials, 2021, 274:122063. [百度学术]
LI N, FARZADNIA N, SHI C J. Microstructural changes in alkali‑activated slag mortars induced by accelerated carbonation[J]. Cement and Concrete Research, 2017, 100:214‑226. [百度学术]
XU R S, WANG H, ZHA Q K, et al. Improving the carbonation resistance of alkali‑activated slag mortars with different additives:Experimental evaluations[J]. Construction and Building Materials, 2023, 366:130197. [百度学术]
李兆恒, 杨永民, 蔡杰龙. 不同环境因素对混凝土碳化深度的影响规律研究[J]. 人民珠江, 2017, 38(1):21‑24. [百度学术]
LI Zhaoheng, YANG Yongmin, CAI Jielong. Effects of the climate conditions to the carbonation depth of concrete[J]. Pearl River, 2017, 38(1):21‑24. (in Chinese) [百度学术]
MCCASLIN E R, WHITE C E. A parametric study of accelerated carbonation in alkali‑activated slag[J]. Cement and Concrete Research, 2021, 145:106454. [百度学术]
LI Z G, LI S. Carbonation resistance of fly ash and blast furnace slag based geopolymer concrete[J]. Cement and Concrete Research, 2018, 163:668‑680. [百度学术]
LI F P, CHEN D F, YANG Z M, et al. Effect of mixed fibers on fly ash‑based geopolymer resistance against carbonation[J]. Construction and Building Materials, 2022, 322:126394. [百度学术]
ZHANG M T, WANG F, LONG Y F, et al. Improving the carbonation resistance of alkali‑activated slag mortars by calcined Mg/Al layered double hydroxides[J]. Applied Clay Science, 2022, 216:106379. [百度学术]
苏英, 魏晓超, 王迎斌, 等. 掺聚丙烯纤维的碱矿渣粉煤灰混凝土抗碳化性能及微结构[J]. 硅酸盐通报, 2016, 35(5):1481‑1485. [百度学术]
SU Ying, WEI Xiaochao, WANG Yingbin, et al. Performance of carbonation resistance and micro‑structure of alkali slag and fly [百度学术]
ash concrete with polypropylene fiber[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(5):1481‑1485. (in Chinese) [百度学术]
李静, 李萍, 林芳, 等. 硅烷偶联剂对碱矿渣混凝土碳化侵蚀的抑制作用[J]. 材料科学与工程学报, 2023, 41(3):497‑501. [百度学术]
LI Jing, LI Ping, LIN Fang, et al. Controlling the carbonation degradation of alkali‑activated slag concrete using silane coupling agent[J]. Journal of Materials Science and Engineering, 2023, 41(3):497‑501. (in Chinese) [百度学术]
郑昊, 梁咏宁, 詹建伟, 等. MgO和CaO对碱矿渣混凝土抗碳化性能的影响[J]. 硅酸盐通报, 2021, 40(8):2564‑2573. [百度学术]
ZHENG Hao, LIANG Yongning, ZHAN Jianwei, et al. Effects of MgO and CaO on the carbonization resistance of alkali‑activated slag concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(8):2564‑2573. (in Chinese) [百度学术]
ANTÓN C, CLIMENT M A, VERA G, et al. An improved procedure for obtaining and maintaining well characterized partial water saturation states on concrete samples to be used for mass transport tests[J]. Materials and Structures, 2013, 46(8):1389‑1400. [百度学术]
RICHARDSON I G. The nature of C‑S‑H in hardened cements[J]. Cement and Concrete Research, 1999, 29(8):1131‑1147. [百度学术]
MAEKAWA K, ISHIDA T, KISHI T. Multi‑scale modeling of structural concrete[M]. Boca Raton:CRC Press, 2014:15‑16. [百度学术]