摘要
为改善砂土的不良工程特性并可用于河道岸坡、地基与道路加固,本文提出了一种使用高聚物和纤维复合改良砂土的方法.通过无侧限抗压强度试验和数值模拟,分析了改良砂土的强度特性及变形破坏模式.结果表明:复合使用高聚物和纤维能够有效提高砂土的抗压强度,且改良砂土的抗压强度随着高聚物和纤维掺量的增加而提高;改良砂土的最大抗压强度为414.53 kPa,纤维和高娶物最佳建议掺量分别为0.6%和4.0%;纤维加入后,在砂土中形成了力链网络,因此增加了应力传递的路径,有效地延缓了砂土内部微裂纹的发育;高聚物加入后,形成的膜状物与纤维交织在一起,形成一种新的网状结构,这显著提升了砂土的抗变形能力.
砂土作为常见的岩土工程材料,在工程建设中广泛使
综上,本文利用高分子聚合物和聚丙烯纤维来复合改良砂土,通过无侧限抗压强度试验,分析改良砂土强度特性,再利用试验结果建立相应的离散元平行黏结模型,借以分析改良砂土的变形破坏模式,最后通过扫描电镜(SEM)对高聚物-纤维复合改良砂土的微观结构和改良机理进行分析,为多种材料复合改良砂土提供一定的理论支撑和实践指导.
砂土取自于南京市江宁区,相对密度为2.66,有效粒径D10、中值粒径D30、控制粒径D60分别为0.12、0.22、0.36 mm,最小孔隙率为0.38,最大孔隙率为0.59.高分子聚合物(SP)为一类含重复氨基甲酸酯结构单元(‑R‑NH‑CO‑O‑R')的有机高分子化合物(

图1 改性材料
Fig.1 Modified material
Appearance | pH value | Specific gravity | Solid content(by mass)/% | Viscosity/(MPa∙s) | Setting time/s |
---|---|---|---|---|---|
Light yellow clear liquid | 7 | 1.15 | ≥90 | 700-800 | 50-1 600 |
Density/(g·c | Diameter/mm | Average length/mm | Tensile strength/MPa | Modulus of elasticity/MPa | Elongation at break/% | Melting point/℃ | Ignition point/℃ |
---|---|---|---|---|---|---|---|
0.91 | 0.04 | 18 | ≥400 | ≥3 500 | 30 | 165 | 580 |
根据预试验相关结果,试验所选用的纤维掺量(以砂土质量计)分别为0.2%、0.4%、0.6%、0.8%,高分子聚合物含量(以砂土质量计)为1.0%、2.0%、3.0%、4.0%.聚丙烯纤维具有极好的分散性,利用工具在砂土中分散纤维,加入高聚物后再次分散纤维,搅拌均匀的高分子聚合物-纤维-砂土混合物放入ϕ39.1×80.0 mm的模具中,采用静压法将其一次压实至设计高度(80 mm),制成干密度1.50 g/c
为进一步分析纤维掺量对改良砂土变形破坏的影响,通过无侧限抗压试验应力应变曲线的对比验证,建立高聚物掺量4.0%下不同纤维掺量的数值模型.在建立的数值模型中,砂粒与纤维被简化为离散的单元球颗粒,基于粒径曲线生成约10 000个砂土球颗粒,通过随机函数在试样内随机生成指定掺量的纤维颗粒,根据砂土和纤维颗粒的不同接触附加上相应的胶结模型(

图2 接触布置和数值模型
Fig.2 Contact placement and numerical model(size: mm)
Category | Parameter | Parameter value |
---|---|---|
Sand particle parameters | Model height/cm | 8.00 |
Model width/cm | 3.91 | |
Minimum grain size/mm | 0.02 | |
Maximum to minimum grain size ratio | 30 | |
Particle density(kg· | 1 500 | |
Initial porosity/% | 0.1 | |
Damping coefficient | 0.7 | |
Fiber particle parameters |
Particle density(kg· | 2 700 |
Grain size/mm | 0.2 | |
Linear model parameters | Linear effective modulus/Pa |
4.0×1 |
Linear stiffness ratio | 1.5 | |
Parallel bond model parameters | Effective modulus of parallel bond/Pa |
0.65×1 |
Parallel bond stiffness ratio | 1.5 | |
Bonding activates the gap/m |
0.5×1 | |
Tensile strength/Pa |
2.0×1 | |
Cohesion/Pa |
2.0×1 | |
Angle of internal friction/(°) | 16-26 |

图3 不同高聚物纤维掺量下改良砂土的应力-应变曲线
Fig.3 Stress‑strain curves of improved sand with different fiber dosage
在不同高聚物和纤维掺量下,改良砂土的应力-应变曲线变化趋势具有同质性,大致分为4个阶段:压密阶段(阶段Ⅰ)、弹性变形阶段(阶段Ⅱ)、塑性变形阶段(阶段Ⅲ)、峰后变形阶段(阶段Ⅳ).以
高聚物和纤维掺量对改良砂土的抗压强度影响见

图4 高聚物和纤维掺量对改良砂土抗压强度的影响
Fig.4 Influence of superpolymer and fiber dosage on compressive strength of modified sand

图5 高掺量纤维与高聚物下改良砂土试样的局部示意图
Fig.5 Local diagram of samples with high dosage of fibers and superpolymer
高聚物增强砂土抗压强度的提升机制主要是高聚物与砂粒面的黏附作用.当高聚物与砂粒接触时,高聚物可通过氢键及M
无侧限抗压强度测试模拟试验结果与室内试验结果对比如

图6 数值试验模型验证
Fig.6 Verification of the numerical simalation test

图7 不同纤维含量试样的力链分布
Fig.7 Force chain distribution of samples with different fiber dosages
进一步分析
不同应变下各纤维掺量试样的力链数量及最大力链强度参数变化如

图8 不同纤维掺量下试样的接触力链参数变化
Fig.8 Change of contact force chain parameters of samples with different fiber dosages
为深入研究纤维掺量对试样破坏的影响,对数值模拟试验不同阶段的结果进行分析,得到不同纤维掺量下试样的破坏模式,见

图9 不同纤维掺量下砂土试样破坏模式
Fig.9 Failure modes of sand samples with the different dosage
数值模拟试验结束后不同纤维掺量的试样微裂纹热力分布情况如

图10 不同纤维掺量的试样微裂纹热力分布
Fig.10 Thermal distribution of microcracks in samples with different fiber dosage

图11 不同纤维掺量下试样微裂纹数量与发育过程
Fig.11 Number and development process of microcracks in samples with different fiber dosage
高聚物-纤维复合改良砂土的改良机理如

图12 高聚物-纤维复合改良砂土的改良机理
Fig.12 Improvement mechanism of sand modified composilely by fiber and polymer
分析改良砂土的微观结构发现,松散的天然砂土在掺入纤维和高聚物后形成了较稳定的结构.纤维与高聚物膜共同作为砂粒间的桥梁,在外界能量输入后进行能量传递和吸收,减少外力作用后的试样破坏.

图13 高聚物-纤维复合改良砂土的破坏过程
Fig.13 Failure process of sand improved compositely by polymer and fiber
(1)高聚物和纤维能显著提升砂土的强度特性.随着高聚物和纤维掺量增加,改良砂土无侧限抗压强度逐渐提升.随着高聚物和纤维掺量增大,试样峰后应力-应变曲线变化明显平缓,呈现出延性破坏形式.考虑纤维分散与高聚物胶结作用,纤维和高聚物的最佳掺量分别为0.6%和4.0%.
(2)纤维分布密度及掺量对改良砂土的力链、变形有显著影响.在纤维分布位置砂土易破坏出现裂纹,力链分布沿裂纹破坏处出现明显分区,随着纤维分布密度增大,纤维分布密集位置砂土颗粒力链逐渐增强,破坏明显减弱,说明纤维与砂粒间有较强的作用,增强了纤维分布密集区域联接.纤维掺量增加,力链数量与最大力链强度明显增大,提高了试样抗压强度.
(3)纤维掺量对改良砂土的破坏模式、微裂纹变化有显著影响.试样破坏的虚线区域有明显力链凹陷,且力链凹陷旁出现强接触力链区.随着纤维掺量增加,力链区域性、破坏程度逐渐减弱,无明显强接触力链区,微裂纹数量逐渐减少,延缓了微裂纹发育,说明纤维增强了试样内部颗粒联接,减缓了裂纹发育及试样破坏.
(4)纤维高聚物的加入显著改善了天然砂土的内部结构.纤维交织穿插在砂粒孔隙中,有效地缠绕住砂粒;高聚物在砂粒和纤维表面形成膜状物,对砂粒具有黏结作用;纤维和高聚物膜共同形成了稳定的网状结构,起到限制砂土变形的作用,增强了改良砂土的抗变形能力.
参考文献
陆加越, 白坤, 张成君, 等.氧化镁矿粉复配加固砂土的强度特性[J/OL].土木与环境工程学报(中英文),2023:1‑5[20230822].http://kns.cnki.net/kcms/detail/50.1218.TU.20230404.0934.002.html. [百度学术]
LU Jiayue, BAI Kun, ZHANG Chengjun, et al. Strength characteristics of sand treated by magnesium oxide actived granulated blast furnace [J/OL]. Journal of Civil and Environmental Engineering, 2023:1‑5[20230822]. http://kns.cnki.net/kcms/detail/50.1218.TU.20230404.0934.002.html.(in Chinese) [百度学术]
LIU J, FENG Q, WANG Y, et al. Experimental study on unconfined compressive strength of organic polymer reinforced sand[J]. International Journal of Polymer Science,2018,2018(1):1‑18. [百度学术]
李玉根, 张慧梅, 刘光秀, 等.风积砂混凝土基本力学性能及影响机理[J].建筑材料学报,2020,23(5):1212‑1221. [百度学术]
LI Yugen, ZHANG Huimei, LIU Guangxiu, et al. Mechanical properties and influence mechanism of a eolian sand concrete [J]. Journal of Building Materials,2020,23(5):1212‑1221. (in Chinese) [百度学术]
潘霞, 许成顺, 徐佳琳,等.饱和砂土循环液化模式影响因素试验研究[J].防灾减灾工程学报,2021,41(3):635‑642. [百度学术]
PAN Xia, XU Chengshun, XU Jialin, et al. Experimental study on influencing factors of circulating liquefaction model of saturated sand soil [J]. Journal of Disaster Prevention and Reduction Engineering, 2021,41(3):635‑642. (in Chinese) [百度学术]
刘云霄, 茌引引, 田威, 等. 不同膨胀剂对水泥基灌浆料性能的影响[J]. 建筑材料学报, 2022, 25(3):307‑313. [百度学术]
LIU Yunxiao, CHI Yinyin, TIAN Wei, et al. Effect of different expanders on properties of cement based grouting material[J]. Journal of Building Materials, 2022, 25(3):307‑313. (in Chinese) [百度学术]
李新明, 路广远, 张浩扬, 等.石灰偏高岭土改良粉砂土强度特性与微观机理[J].建筑材料学报,2021,24(3):648‑655. [百度学术]
LI Xinming, LU Guangyuan, ZHANG Haoyang, et al. Strength characteristics and micro‑mechanism of lime‑metakaolin modified silty soil [J]. Journal of Building Materials,2021,24(3):648‑655. (in Chinese) [百度学术]
李丽华, 岳雨薇, 肖衡林, 等.稻壳灰-水泥固化镉污染土性能及影响机制[J].岩土工程学报,2023,45(2):252‑261. [百度学术]
LI Lihua,YUE Yuwei,XIAO Henglin, et al.Performance and influence mechanism of Cd‑contaminated soil solidified by rice husk ash‑cement[J].Chinese Journal of Geotechnical Engineering,2023,45(2):252‑261.(in Chinese) [百度学术]
周海龙, 申向东.土壤固化剂的应用研究现状与展望[J].材料导报,2014,28(9):134‑138. [百度学术]
ZHOU Hailong, SHEN Xiangdong. Research status and prospect of soil curing agent application [J]. Materials Review,2014,28(9):134‑138. (in Chinese) [百度学术]
樊恒辉, 高建恩, 吴普特.土壤固化剂研究现状与展望[J].西北农林科技大学学报(自然科学版),2006,34(2):141‑146,152. [百度学术]
FAN Henghui, GAO Jian’en, WU Pute. Research status and prospect of soil curing agent [J]. Journal of Northwest A & F University (Natural Science),2006,34(2):141‑146,152. (in Chinese) [百度学术]
倪静, 王子腾, 耿雪玉.植物-生物聚合物联合法固土的试验研究[J].岩土工程学报,2020,42(11):2131‑2137. [百度学术]
NI Jing, WANG Ziteng, GENG Xueyu. Experimental study on soil consolidation by plant‑biopolymer method [J]. Journal of Rock and Soil Engineering, 2020,42(11):2131‑2137. (in Chinese) [百度学术]
李明阳, 刘瑾, 梅红, 等.有机复合客土基材接触面剪切力学特性试验[J].哈尔滨工业大学学报,2023,55(6):134‑142. [百度学术]
LI Mingyang, LIU Jin, MEI Hong, et al. Shear mechanical properties of contact surface of organic composite clay substrates [J]. Journal of Harbin Institute of Technology,2023,55(6):134‑142. (in Chinese) [百度学术]
刘瑾, 白玉霞, 宋泽卓, 等.OPS型固化剂改良砂土工程特性试验研究[J].东南大学学报(自然科学版),2019,49(3):495‑501. [百度学术]
LIU Jin, BAI Yuxia, SONG Zezhuo, et al. Experimental study on engineering characteristics of sand improved by OPS curing agent [J]. Journal of Southeast University (Natural Science),2019,49(3):495‑501. (in Chinese) [百度学术]
LIU J, QI X H, ZHANG D, et al. Study on the permeability characteristics of polyurethane soil stabilizer reinforced sand[J]. Advances in Materials Science and Engineering ,2017, (3):1‑14. [百度学术]
姚淇耀, 陆宸宇, 罗月静, 等.PE/PVA纤维海砂ECC的拉伸性能与本构模型[J].建筑材料学报,2022,25(9):976‑983. [百度学术]
YAO Qiyao, LU Chenyu, LUO Yuejing, et al. Tensile properties and constitutive model of PE/PVA fiber marine sand with ECC [J]. Journal of Building Materials,2022,25(9):976‑983. (in Chinese) [百度学术]
郝建斌, 魏兴梅, 姚婕, 等.麦秸秆加筋土的强度特性及细观结构分析[J].同济大学学报(自然科学版), 2019, 47(6):764‑768,831. [百度学术]
HAO Jianbin, WEI Xingmei, YAO Jie, et al. Strength characteristics and microstructure analysis of wheat straw reinforced soil [J]. Journal of Tongji University (Natural Science), 2019, 47(6):764‑768,831. (in Chinese) [百度学术]
SILVEIRA M V,CASAGRANDE M D T.Effects of degradation of vegetal fibers on the mechanical behavior of reinforced sand[J].Geotechnical and Geological Engineering,2021, 39(12):3875‑3887. [百度学术]
郑少鹏, 牛开民, 田波, 等.聚合物乳液对水泥砂浆流变性能的影响[J].建筑材料学报,2017,20(6):962‑969. [百度学术]
ZHENG Shaopeng, NIU Kaimin, TIAN Bo, et al. Effect of polymer emulsion on rheological properties of cement mortar [J]. Journal of Building Materials,2017,20(6):962‑969. (in Chinese) [百度学术]
芦苇, 骆望, 李东波, 等.椰壳纤维加筋土遗址生态注浆材料性能研究[J].建筑材料学报,2024,27(1):90‑98. [百度学术]
LU Wei, LUO Wang, LI Dongbo, et al. Performance of coir fiber reinforced eco‑grouting material used in earthen sites [J]. Journal of Building Materials,2024,27(1):90‑98. (in Chinese) [百度学术]
谢明君,温宇彤,徐玲琳等.木质素/玻璃纤维复合改性沥青混凝土路用性能提升效果研究[J].建筑材料学报,2023,26(11):1200‑1206. [百度学术]
XIE Mingjun, WEN Yutong, XU Linglin, et al. Composite modification with Cellulose fiber/glass fiber to enhance the pavement performance of asphalt concrete [J]. Journal of Building Materials,2023,26(11):1200‑1206. (in Chinese) [百度学术]
蒋明镜, 胡海军, 彭建兵.结构性黄土-维湿陷特性的离散元数值模拟[J].岩土力学,2013,34(4):1121‑1130. [百度学术]
JIANG Mingjing, HU Haijun, PENG Jianbing. Discrete element numerical simulation of one‑dimensional collapsibility of structural loess [J]. Rock and Soil Mechanics,2013,34(4):1121‑1130. (in Chinese) [百度学术]
张程林, 周小文.砂土颗粒三维形状模拟离散元算法研究[J].岩土工程学报,2015,37(增刊1):115‑119. [百度学术]
ZHANG Chenglin, ZHOU Xiaowen. Research on discrete element algorithm for three‑dimensional shape simulation of sand particles [J]. Chinese Journal of Geotechnical Engineering,2015,37(Suppl 1):115‑119. (in Chinese) [百度学术]
倪雪倩, 叶斌.砂土液化后液-固相变机理的单元试验与模拟[J].同济大学学报(自然科学版),2023,51(1):16‑22. [百度学术]
NI Xueqian, YE Bin. Unit test and simulation of liquid‑solid phase transition mechanism of sand after liquefaction [J]. Journal of Tongji University (Natural Science), 2023,51(1):16‑22. (in Chinese) [百度学术]
高广运, 洪洋, 耿建龙, 等.饱和砂土液化判别与放大效应数值模拟研究[J].工程地质学报,2022,30(6):1874‑1881. [百度学术]
GAO Guangyun, HONG Yang, GENG Jianlong, et al. Numerical simulation of liquefaction discrimination and amplification effect of saturated sand [J]. Journal of Engineering Geology,2022,30(6):1874‑1881. (in Chinese) [百度学术]
叶斌, 宋思聪, 倪雪倩.制样方法对砂土液化力学性质影响的离散元模拟[J].同济大学学报(自然科学版),2022,50(7):998‑1008. [百度学术]
YE Bin, SONG Sicong, NI Xueqian. Discrete element simulation of effects of sample preparation methods on mechanical properties of sand liquefaction [J]. Journal of Tongji University (Natural Science),2022,50(7):998‑1008. (in Chinese) [百度学术]
周林禄, 苏雷, 凌贤长, 等.纤维加筋砂土抗液化试验与数值模拟[J]. 工程地质学报, 2021, 29(5):1567‑1576. [百度学术]
ZHOU Linlu, SU Lei, LING Xianchang, et al. Test and numerical simulation of resistance to liquefaction of fiber‑reinforced sand [J]. Chinese Journal of Engineering Geology, 2021, 29(5):1567‑1576. (in Chinese) [百度学术]
唐朝生, 顾凯.聚丙烯纤维和水泥加固软土的强度特性[J].土木工程学报,2011,44(增刊2):5‑8. [百度学术]
TANG Chaosheng, GU Kai. Strength characteristics of soft soil reinforced by polypropylene fiber and cement [J]. Journal of Civil Engineering,2011,44(Suppl 2):5‑8. (in Chinese) [百度学术]
白玉霞, 刘瑾, 宋泽卓, 等.高聚物改良砂土强度特性和变形特征试验研究[J/OL].复合材料学报,2024:1‑17[20240514].https://doi.org/10.13801/j.cnki.fhclxb.20231129.003. [百度学术]
BAI Yuxia, LIU Jin, SONG Zetzhuo, et al. Experimental study on strength and deformation characteristics of sand improved by high polymer [J/OL]. Acta Materiae Compositae Sinica,2024:1‑17[20240514].https://doi.org/10.13801/j.cnki.fhclxb.20231129.003.(in Chinese) [百度学术]
BAI Y X, LIU J, CUI Y J, et al. Mechanical behavior of polymer stabilized sand under different temperatures[J].Construction and Building Materials,2021, 290:123237. [百度学术]