摘要
采用焙烧-还原法制备了苯并三唑改性水滑石(LDHs‑BTA)并对其进行了表征,同时通过电化学阻抗谱测试和氯离子吸附试验探究了LDHs‑BTA对钢筋的阻锈性能.结果表明:LDHs‑BTA能够有效提升模拟混凝土孔隙溶液中钢筋的耐腐蚀性能;LDHs‑BTA通过层间BT
在严酷的海洋环境下,钢筋混凝土结构极易发生氯离子引发的钢筋锈
层状双金属氢氧化物又被称为水滑石(LDHs),化学通式为[MM(OH)2
目前,已有部分学者采用BTA插层LDHs内部构建LDHs‑BTA并将其运用于金属防护领域.Williams
因此,本文采用焙烧-还原法制备LDHs‑BTA并对其结构进行表征;采用多种微观测试手段探究LDHs‑BTA吸附C
镁铝水滑石(LDHs‑CO3)由上海阿拉丁生化科技股份有限公司生产,分析纯,化学式Mg5Al2(CO3)(OH)14·xH2O;苯并三唑由上海麦克林生化科技股份有限公司生产,分析纯,化学式C6H5N3;所有配制溶液的水均为煮沸后的去离子水.
采用焙烧-还原法在无惰性气体保护条件下对LDHs‑CO3进行改性.首先,将LDHs‑CO3粉末置于马弗炉中,升温速率为3 ℃/min,升温至500 ℃后煅烧5 h,再冷却至室温,所得粉末为焙烧水滑石(CLDHs);然后,分别称取一定量BTA和CLDHs溶于水中配制成混合溶液,其中BTA、CLDHs和水的质量比为1.0∶1.5∶30.0;最后,将混合溶液加热至100 ℃,搅拌1 h,然后水洗3~5次并在105 ℃下真空干燥18 h,即得到LDHs‑BTA.
采用PANalytical X‑pert 3 X型X射线衍射仪(XRD)对LDHs样品的晶体结构进行表征,Cu靶,Kα射线,测试角度3.5°~70.0°,扫描速率4(°)/min;采用ThermoScientific Nicolet IS50型傅里叶变换红外光谱仪(FTIR)对LDHs的内部官能团进行测试分析,波数范围为4 000~400 c
为探究LDHs‑BTA对氯离子的吸附能力,首先将0.40 g的LDHs‑BTA加入到100 mL不同浓度(0.01、0.02、0.05、0.10、0.15、0.25、0.40、0.60 mol/L)的NaCl溶液中;然后,将悬浮液放入体积为120 mL的密封瓶中,持续搅拌12 h并静置120 h,采用电位滴定法测定上清液中的C
钢筋为ϕ10×10 mm的Q235碳钢,选其中一个截面作为测试面(约0.785 c
选用饱和Ca(OH)2溶液(CH)作为模拟混凝土孔隙溶液(SCPS),将打磨光亮的钢筋分别浸泡在T1和T2这2组SCPS中.T1组为添加350 mL CH的SCPS,T2组为添加350 mL CH+0.5%(以溶液质量计)LDHs‑BTA的SCPS,每组SCPS中放入3个钢筋试样,待钢筋完全钝化后,每24 h分别向T1和T2组SCPS中加入0.01、0.02 mol/L的C
电化学测试采用三电极体系,以钢筋为工作电极,铂电极为对电极,饱和甘汞电极为参比电极.利用CHI660E型电化学工作站测试钢筋的开路电位(OCP)和电化学阻抗谱(EIS),OCP和EIS测试每24 h进行1次.首先,进行OCP测试,待OCP 5 min内的变化幅度在±2 mV以内时认为其已经达到稳定状态;然后,进行EIS测试,振幅为10 mV,测试频率范围为1
LDHs‑CO3、CLDHs和LDHs‑BTA的XRD图谱如

图1 LDHs‑CO3、CLDHs和LDHs‑BTA的XRD图谱
Fig.1 XRD patterns of LDHs‑CO3, CLDHs and LDHs‑BTA

图2 LDHs‑BTA结构重建示意图
Fig.2 Schematic diagram of LDHs‑BTA structure reconstruction
根据布拉格方程,计算得出LDHs‑CO3和LDHs‑BTA的晶面间距(d003)分别为0.760、1.510 nm,层间距可通过晶面间距减去氢氧化物层的厚度(约0.480 nm)获

图3 LDHs‑CO3、CLDHs和LDHs‑BTA的FTIR图谱
Fig.3 FTIR spectra of LDHs‑CO3, CLDHs and LDHs‑BTA

图4 LDHs‑CO3和LDHs‑BTA的TG‑DSC曲线
Fig.4 TG‑DSC curves of LDHs‑CO3 and LDHs‑BTA
(1)2种水滑石均出现2个主要失重阶段,LDHs‑CO3(
(2)LDHs‑BTA(

图5 LDHs‑CO3、CLDHs和LDHs‑BTA的SEM和EDS图像
Fig.5 SEM and EDS images of LDHs‑CO3, CLDHs and LDHs‑BTA
(1)3种水滑石均呈现出典型的层片状结构,颗粒之间相互堆叠.LDHs‑CO3排列有序,表面光滑,晶体完整,与已有文献描述形貌相
(2)LDHs‑CO3仅含有C、O、Mg、Al元素.CLDHs同样仅含有C、O、Mg、Al元素,但是其C元素含量与LDHs‑CO3相比大幅度减少.这是因为LDHs‑CO3经高温煅烧后,其层状结构被破坏,层间CO以CO2的形式溢出.LDHs‑BTA不仅含有C、O、Mg、Al元素,还含有N元素,表明BT
(1) |
(2) |
式中:Qe为单位质量LDHs‑BTA对氯离子的平衡吸附量,mg/g;Qm为LDHs‑BTA对氯离子的理论最大吸附量,mg/g;KL为与氯离子吸附量和吸附速率相关的Langmuir常数,L/mol;KF为与吸附量的Freumdlich等温线常数,L/mol;n为与非均匀性因子相关的Freumdlich等温线常数;Ce为氯离子吸附平衡时的浓度,mol/L.

图6 LDHs‑BTA对氯离子的等温吸附曲线
Fig.6 Isothermal adsorption curve of LDHs‑BTA for chloride ions
由

图7 LDHs‑BTA吸附氯离子前后的XRD图谱
Fig.7 XRD patterns before and after LDHs‑BTA adsorption of chloride ions
LDHs‑BTA+C | (3) |

图8 LDHs‑BTA‑Cl的SEM和EDS图像
Fig.8 SEM and EDS images of LDHs‑BTA‑Cl

图9 不同SCPS中钢筋在不同氯离子浓度下的电化学阻抗谱图
Fig.9 Electrochemical impedance spectra of rebars in different SCPS at different chloride ion concentrations
从
从
采用2个独立的等效电路(

图10 等效电路模型
Fig.10 Equivalent circuit model
No. | c(C | Rs/(Ω·c | Rp/(kΩ·c | Rf/(kΩ·c | Rpore/(kΩ·c | Qdl×1 | ndl | Qf×1 | nf |
---|---|---|---|---|---|---|---|---|---|
0 | 49.100 | 409.100 | 41.920 | 4.44 | 0.911 | 1.28 | 0.893 | ||
T1 | 0.01 | 39.560 | 361.000 | 40.140 | 4.70 | 0.905 | 1.38 | 0.881 | |
0.02 | 24.500 | 1.272 | 1.693 | 7.63 | 0.904 | 6.27 | 0.834 | ||
T2 | 0 | 46.240 | 802.200 | 1 124.000 | 1.73 | 0.963 | 1.16 | 0.999 | |
0.02 | 34.810 | 1 398.000 | 1 340.000 | 1.89 | 0.979 | 1.22 | 0.971 | ||
0.04 | 28.190 | 1 528.000 | 1 456.000 | 1.90 | 0.973 | 1.25 | 0.969 | ||
0.06 | 25.080 | 1 838.000 | 1 619.000 | 1.95 | 0.968 | 1.27 | 0.963 | ||
0.08 | 20.850 | 2 157.000 | 1 778.000 | 1.95 | 0.947 | 1.28 | 0.989 | ||
0.10 | 19.670 | 2.394 | 4.126 | 5.75 | 0.944 | 79.90 | 0.835 |
(1)从T1组拟合数据可知,随着C
(2)T2组中钢筋的Rp值随着C
Rate of corrosion | Rp/(kΩ·c |
---|---|
Very high | <26 |
High | 26-52 |
Low/moderate | 52-130 |
Passive | ≥130 |
由
(2)T2组钢筋在C

图11 钢筋在含有3.5%NaCl的不同SCPS中浸泡24 h后的SEM和EDS图
Fig.11 SEM‑EDS image of rebars after soaking in different SCPS containing 3.5% NaCl for 24 h
(1)浸泡在T3和T4这2组SCPS中的钢筋之间存在显著差异;T3组(
(2)T4组(

图12 LDHs‑BTA对钢筋的阻锈机理示意图
Fig.12 Mechanism diagram of LDHs‑BTA for rust inhibition of rebars
(1)BTA改性后的LDHs‑CO3晶面间距由原来的0.760 nm增大至1.510 nm,层间距由0.280 nm增大至1.030 nm.
(2)LDHs‑BTA通过层间的BT
(3)LDHs‑BTA能够提升钢筋锈蚀的临界氯离子浓度,当LDHs‑BTA添加量为0.5%时,钢筋锈蚀的氯离子浓度阈值由0.02 mol/L提升至0.10 mol/L.LDHs‑BTA对钢筋的阻锈作用来自于对C
参考文献
郭群,李晓珍,宋屹林,等.钢筋阻锈剂在碳化钢筋混凝土中的阻锈作用[J]. 建筑材料学报, 2023, 26(1):21‑28. [百度学术]
GUO Qun, LI Xiaozhen, SONG Yilin, et al. Effect of steel bar corrosion inhibitors in carbonated reinforced concrete[J]. Journal of Building Materials, 2023, 26(1):21‑28. (in Chinese) [百度学术]
MAMAS S, KYAK T, KABASAKALOGIOU M, et al. The effect of benzotriazole on brass corrosion[J]. Materials Chemistry and Physics, 2005, 93(1):41‑47. [百度学术]
BOLZONI F, BRENNA A, FUMAGALLI G, et al. Experiences on corrosion inhibitors for reinforced concrete[J]. International Journal of Corrosion and Scale Inhibition, 2014, 3(4):254‑278. [百度学术]
吴青山, 赵鹏程, 刘志启, 等. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(增刊1):149‑156. [百度学术]
WU Qingshan, ZHAO Pengcheng, LIU zhiqi, et al. Preparation and application of magnesium‑aluminum hydrotalcite[J]. Materials Reports, 2022, 36(Suppl 1):149‑156. (in Chinese) [百度学术]
ZHANG Y G, SUN C T, ZHANG P, et al. Chloride binding of monosulfate hydrate(AFm) and its effect on steel corrosion in simulated concrete pore solution[J]. Journal of Building Engineering, 2023, 67:105945. [百度学术]
LI C Z, JIANG L H, LI S S. Effect of limestone powder addition on threshold chloride concentration for steel corrosion in reinforced concrete[J]. Cement and Concrete Research, 2020, 131:106018. [百度学术]
左义兵, 廖宜顺, 叶光, 等. 盐耦合侵蚀下碱矿渣水泥相演变的热力学模拟[J]. 建筑材料学报, 2023, 26(1):7‑13. [百度学术]
ZUO Yibing, LIAO Yishun, YE Guang, et al. Thermodynamic modelling of phase evolution in alkali‑activated slag cement upon combined attack of salts[J]. Journal of Building Materials, 2023, 26(1):7‑13. (in Chinese) [百度学术]
WILLIAMS G, MCMURRAY H N. Inhibition of filiform corrosion on polymer coated AA2024‑T3 by hydrotalcite‑like pigments incorporating organic anions[J]. Electrochemical and Solid‑State Letters, 2004, 7(5):B13. [百度学术]
RODRIGUEZ J, BOLLEN E, NGUYEN T D, et al. Incorporation of layered double hydroxides modified with benzotriazole into an epoxy resin for the corrosion protection of Zn‑Mg coated steel[J]. Progress in Organic Coatings, 2020, 149:105894. [百度学术]
SERDECHNOVA M, KALLIP S, FERREIRA M G S, et al. Active self‑healing coating for galvanically coupled multi‑material assemblies[J]. Electrochemistry Communications, 2014, 41:51‑54. [百度学术]
CAO Y H, DONG S G, ZHENG D J, et al. Multifunctional inhibition based on layered double hydroxides to comprehensively control corrosion of steel rebar in concrete[J]. Corrosion Science, 2017, 126:166‑179. [百度学术]
解静, 张轩翰, 龙武剑. 焙烧水滑石对水泥-粉煤灰胶凝材料水化及力学性能的影响[J]. 硅酸盐学报, 2022, 50(2):396‑402. [百度学术]
XIE Jing, ZHANG Xuanhan, LONG Wujian. Effect of calcined hydrotalcite on hydration and mechanical strength of cement‑fly ash cementitious material[J]. Journal of the Chinese Ceramic Society, 2022, 50(2):396‑402. (in Chinese) [百度学术]
XU J X, SONG Y B, TAN Q P, et al. Chloride absorption by nitrate, nitrite and aminobenzoate intercalated layered double hydroxides[J]. Journal of Materials Science, 2017, 52(10):5908‑5916. [百度学术]
PETRUNIN M, MAKSAEVA L, GLADKIKH N, et al. Thin benzotriazole films for inhibition of carbon steel corrosion in neutral electrolytes[J]. Coatings, 2020, 10(4):362. [百度学术]
LI D D, WANG F Y, YU X, et al. Anticorrosion organic coating with layered double hydroxide loaded with corrosion inhibitor of tungstate[J]. Progress in Organic Coatings, 2011, 71(3):302‑309. [百度学术]
CHEN Y X, SHUI Z H, CHEN W, et al. Chloride binding of synthetic Ca‑Al‑NO3 LDHs in hardened cement paste[J]. Construction and Building Materials, 2015, 93:1051‑1058. [百度学术]
ZUO J D, WU B, LUO C Y, et al. Preparation of MgAl layered double hydroxides intercalated with nitrite ions and corrosion protection of steel bars in simulated carbonated concrete pore solution[J]. Corrosion Science, 2019, 152:120‑129. [百度学术]
MENNUCCI M M, BANCZEK E P, RODRIGUES P, et al. Evaluation of benzotriazole as corrosion inhibitor for carbon steel in simulated pore solution[J]. Cement and Concrete Composites, 2009, 31(6):418‑424. [百度学术]
YANG Z X, FISCHER H, CEREZO J, et al. Aminobenzoate modified MgAl hydrotalcites as a novel smart additive of reinforced concrete for anticorrosion applications[J]. Construction and Building Materials, 2013, 47:1436‑1443. [百度学术]
REY F, FORNÉS V, ROJO J M. Thermal decomposition of hydrotalcites. An infrared and nuclear magnetic resonance spectroscopic study[J]. Journal of the Chemical Society, Faraday Transactions, 1992, 88(15):2233‑2238. [百度学术]
COSTA F R, LEUTERITZ A, WAGENKNECHT U, et al. Intercalation of Mg‑Al layered double hydroxide by anionic surfactants:Preparation and characterization[J]. Applied Clay Science, 2009, 38(3/4):153‑164. [百度学术]
CAVANI F, TRIFIR F, VACCARI A. Hydrotalcite‑type anionic clays:Preparation, properties and applications[J]. Catalysis Today, 1991, 11(2):173‑301. [百度学术]
TAYLOR H F W. Crystal structures of some double hydroxide minerals[J]. Mineralogical Magazine, 1973, 39(304):377‑389. [百度学术]
刘定鹏, 秦军, 吕晴, 等. 以粉煤灰为原料制备镁铝水滑石[J]. 硅酸盐学报, 2020, 48(8):1341‑1347. [百度学术]
LIU Dingpeng, QIN Jun, LÜ Qing, et al. Preparation of magnesium‑aluminum hydrotalcite from fly ash[J]. Journal of the Chinese Ceramic Society, 2020, 48(8):1341‑1347. (in Chinese) [百度学术]
吴波. 阻锈阴离子插层改性水滑石的制备及其在水泥砂浆中的应用[D]. 深圳:深圳大学, 2019. [百度学术]
WU Bo. Preparation of inhibitor ions intercalation modified hydrotalcite and its application in cement mortar[D]. Shenzhen:Shenzhen University, 2019. (in Chinese) [百度学术]
YANG L, CHEN M X, LU Z Y, et al. Synthesis of CaFeAl layered double hydroxides 2D nanosheets and the adsorption behaviour of chloride in simulated marine concrete[J]. Cement and Concrete Composites, 2020, 114:103817. [百度学术]
CONSTANTINO V R L, PINNAVAIA T J. Basic properties of MgAl layered double hydroxides intercalated by carbonate, hydroxide, chloride, and sulfate anions[J]. ChemInform, 1995, 26(4):883‑892. [百度学术]
JAMIL H E, MONTEMOR M F, BOULIF R, et al. An electrochemical and analytical approach to the inhibition mechanism of an amino‑alcohol‑based corrosion inhibitor for reinforced concrete[J]. Electrochimica Acta, 2003, 48(23):3509‑3518. [百度学术]
YANG D Q, YAN C W, ZHANG J, et al. Chloride threshold value and initial corrosion time of steel bars in concrete exposed to saline soil environments[J]. Construction and Building Materials, 2021, 267:120979. [百度学术]
WANG P G, WANG Y, ZHAO T J, et al. Effectiveness protection performance of an internal blending organic corrosion inhibitor for carbon steel in chloride contaminated simulated concrete pore solution[J]. Journal of Advanced Concrete Technology, 2020, 18(3):116‑128. [百度学术]
YANG D Q, YAN C W, ZHANG J, et al. Chloride threshold value and initial corrosion time of steel bars in concrete exposed to saline soil environments[J]. Construction and Building Materials, 2021, 267:120979. [百度学术]
MILLARD S G, LAW D, BUNGEY J H, et al. Environmental influences on linear polarisation corrosion rate measurement in reinforced concrete[J]. Ndt and E International, 2001, 34(6):409‑417. [百度学术]