摘要
通过后续水化试验,研究了不同养护制度和水中水化温度下水泥基材料的水分迁移规律,分析了水分迁移对水泥基材料后续水化与微结构的影响.结果表明:水泥基材料结合水量随试件深度增加呈减小趋势,后续水化35 d时,试件深度160 mm处的结合水量较深度0 mm处降低6.4%;试件深度80 mm处的后续水化结合水量(前期)随高温水浴养护时间延长呈减小趋势,随水中水化温度升高而增大;当水中水化温度过高(60 ℃)时,水泥基材料内部生成微裂缝,孔结构粗化,后续水化表现为损伤作用.
随着减水剂技术的快速发展,在满足工作性的前提下,水泥基材料水灰比可降至0.2
因此,本文针对低水灰比水泥基材料开展后续水化试验. 首先,通过测定试件不同深度处的结合水量,研究不同养护制度和水中水化温度下水泥基材料的水分迁移规律;然后,以后续水化结合水量为评价指标,分析水分迁移对水泥基材料后续水化的影响;最后,结合微观形貌和孔结构变化,阐明后续水化对水泥基材料微结构的影响. 以期为低水灰比水泥基材料长期性能评价与设计提供依据.
水泥采用P·O 42.5普通硅酸盐水泥,比表面积和密度分别为339
SiO2 | CaO | Al2O3 | Fe2O3 | MgO | SO3 | Na2O | K2O | TiO2 | Other |
---|---|---|---|---|---|---|---|---|---|
21.40 | 60.10 | 6.25 | 2.94 | 3.95 | 3.67 | 0.29 | 0.76 | 0.30 | 0.34 |
制备尺寸为40 mm×40 mm×160 mm试件,先将其在恒温恒湿环境((20±2) ℃、相对湿度(30±5)%)下静置1 d,拆模后再在75 ℃水浴环境下养护3、5、7 d. 为模拟水泥基材料在一维条件下的水分迁移行为,采用环氧树脂对上述试件进行涂抹处理:仅保留1个40 mm×40 mm端面,其余5个面均涂抹环氧树脂,以阻止外界水分进入,待环氧树脂完全固化后,将试件置于不同水中水化温度下开展后续水化试验. 待试件后续水化至规定时间,分别测定其不同深度处的结合水量. 每组3个试件,试验值取其平均值.
为了研究后续水化过程中养护制度对水泥基材料水分迁移的影响,将后续水化试验前的养护制度设置为:75 ℃水浴养护3、5、7 d,后续水化环境统一为60 ℃水中. 为了研究水中水化温度对水泥基材料水分迁移的影响,将75 ℃水浴养护3 d作为后续水化试验的时间起点,后续水化环境设置为20、35、60 ℃水中.
将后续水化至规定时间的试件用切割机切割为四等分,并在试件深度0、40、80、120、160 mm处取样,试件切割示意图如

图1 试件切割示意图
Fig.1 Cutting schematic diagram of specimen

图2 不同养护制度下水泥基材料结合水量测定结果
Fig.2 Determination results of amount of combined water in cement‑based materials under different curing regimes
由

图3 不同水中水化温度下水泥基材料结合水量测定结果
Fig.3 Determination results of amount of combined water in cement‑based materials under different hydration temperatures of water
为分析水分迁移对水泥基材料后续水化的影响,给出了试件深度80 mm处不同影响因素下水泥基材料后续水化结合水量(水泥基材料在任一后续水化时刻的结合水量与高温水浴养护结束时结合水量之差)随后续水化时间变化曲线,如

图4 不同影响因素下水泥基材料后续水化结合水量随后续水化时间变化曲线
Fig.4 Variation curves of amount of combined water in cement‑based material for further hydration with further hydration time under different influence factors
为分析后续水化对水泥基材料微结构的影响,测定20、35、60 ℃水中水泥基材料的微观形貌和孔结构,结果如图

图5 不同水中水化温度下水泥基材料的微观形貌
Fig.5 Micro‑morphologies of cement‑based materials under different hydration temperatures of water

图6 不同水中水化温度下水泥基材料孔结构对比结果
Fig.6 Comparison results of pore structure of cement‑based materials under different hydration temperatures of water
(1)不同养护制度和水中水化温度下水泥基材料结合水量随试件深度增大呈减小趋势.后续水化35 d时,75 ℃水浴养护5 d的水泥基材料在试件深度160 mm处的结合水量较深度0 mm处降低6.4%,而20 ℃水中水泥基材料在试件深度160 mm处结合水量较深度0 mm处降低5.5%.
(2)后续水化前期,水泥基材料后续水化结合水量随高温水浴养护时间延长呈减小趋势;后续水化后期该值陡然增大,且在后续水化过程中,水中水化温度越高,后续水化结合水量越大.在试件深度80 mm处,当后续水化28 d时,75 ℃水浴养护7 d的水泥基材料后续水化结合水量较75 ℃水浴养护3 d降低57.7%;当后续水化35 d时,该值反而增大16.0%.当后续水化35 d时,60 ℃水中水泥基材料后续水化结合水量较20 ℃水中增大51.6%.
(3)高温作用加快了水泥的后续水化反应,后续水化产物不断填充水泥基材料内部孔隙和初始缺陷,孔结构得以细化,此时后续水化表现为填充作用;但是当水中水化温度过高(60 ℃)时,水泥基材料内部生成微裂缝,孔结构粗化,此时后续水化表现为损伤作用.对于长期在水环境中服役的低水灰比水泥基材料,在进行长期稳定性、结构可靠度评估及修复等工作时,应充分考虑后续水化的影响.
参考文献
AHMED T, GILLES E, SOLTANCE L, et al. Metakaolin in the formulation of UHPC[J]. Construction and Building Materials, 2009, 23(2):669‑674. [百度学术]
JENSEN O M, HANSEN P F. Water‑entrained cement‑based materials:I. Principles and theoretical background[J]. Cement and Concrete Research, 2001, 31(4):647‑654. [百度学术]
殷吉强, 李杨, 王冲, 等. 低水胶比水泥基材料中的水分迁移[J]. 材料科学与工程学报, 2014, 32(4):499‑504. [百度学术]
YIN Jiqiang, LI Yang, WANG Chong, et al. Moisture migration of cement‑based materials with low W/B[J]. Journal of Materials Science and Engineering, 2014, 32(4):499‑504.(in Chinese) [百度学术]
林俊人, 林种玉, 杜荣归, 等.多重全内反射红外光谱原位研究混凝土渗透性[J]. 光谱学与光谱分析, 2011, 31(5):1236‑1240. [百度学术]
LIN Junren, LIN Zhongyu, DU Ronggui, et al. In situ measurement of the permeability of concrete by FTIR‑MIR[J]. Spectroscopy and Spectral Analysis, 2011, 31(5):1236‑1240.(in Chinese) [百度学术]
NIZOVTSEV M I, STANKUS S V, STERLYAGOV A N, et al. Determination of moisture diffusivity in porous materials using gamma‑method[J]. International Journal of Heat and Mass Transfer, 2008, 51(17/18):4161‑4167. [百度学术]
SHEN L, LO MONTE F , DI LUZIO G , et al. On the moisture migration of concrete subject to high temperature with different heating rates[J]. Cement and Concrete Research, 2021, 146:106492. [百度学术]
MORADLLO M K, LEY M T. Quantitative measurement of the influence of degree of saturation on ion penetration in cement paste by using X‑ray imaging[J]. Construction and Building Materials, 2017, 141:113‑129. [百度学术]
LIU Z Y, WANG Y C, WU M, et al. In situ visualization of water transport in cement mortar with an ultra‑low w/b ratio under the coupling conditions of osmotic pressure, confining pressure, and temperature[J]. Materials and Structures, 2023, 56:68. [百度学术]
GAO F F, TIAN W, CHENG X. Investigation of moisture migration of MWCNTs concrete after different heating‑cooling process by LF‑NMR[J]. Construction and Building Materials, 2021, 288:123146. [百度学术]
VOSS A, POUR‑GHAZ M, VAUHKONEN M, et al. Electrical capacitance tomography to monitor unsaturated moisture ingress in cement‑based materials[J]. Cement and Concrete Research, 2016, 89:158‑167. [百度学术]
SMYL D, RASHETNIA R, SEPPÄNEN A, et al. Can electrical resistance tomography be used for imaging unsaturated moisture flow in cement‑based materials with discrete cracks?[J]. Cement and Concrete Research, 2017, 91:61‑72. [百度学术]
李昕. 基于电性法研究水泥基材料毛细吸收特性及液体传输特征[D]. 杭州:浙江大学, 2014. [百度学术]
LI Xin. Study on capillary absorption characteristic and liquid transmission characteristic of cement‑based materials using electrical property method[D]. Hangzhou:Zhejiang University, 2014.(in Chinese) [百度学术]
CASTRO A F, VALCUENDE M, VIDAL B. Using microwave near‑field reflection measurements as a non‑destructive test to determine water penetration depth of concrete[J]. NDT & E International, 2015, 75:26‑32. [百度学术]
董必钦, 郭邦文, 刘昱清, 等. 水泥净浆水分传输过程可视化表征与定量分析[J]. 深圳大学学报(理工版), 2018, 35(3):285‑291. [百度学术]
DONG Biqin, GUO Bangwen, LIU Yuqing, et al. Visualization and quantitative analysis of water transport evolution in cementitious materials[J]. Journal of Shenzhen University(Science and Engineering), 2018, 35(3):285‑291.(in Chinese) [百度学术]
凌纪花. 带裂缝水泥基材料水分传输过程的快速可视化表征与量化分析[D]. 深圳:深圳大学, 2020. [百度学术]
LING Jihua. Quick visual characterization and quantitative analysis of the moisture transmission process of cement‑based materials with cracks[D]. Shenzhen:Shenzhen University, 2020.(in Chinese) [百度学术]
AN M Z, WANG Y, YU Z R. Damage mechanisms of ultra‑high‑performance concrete under freeze‑thaw cycling in salt solution considering the effect of rehydration[J]. Construction and Building Materials, 2019, 198:546‑552. [百度学术]