摘要
采用MgO碳化技术对疏浚底泥进行固化处理,通过强度试验和微观特性试验,系统分析了活性MgO碳化固化底泥的主要影响因素及微观机理.结果表明:增加活性MgO掺量能生成较多的水化产物和碳化产物,使得底泥强度明显增大;土体含水率与压实度能够影响CO2在土体内部的运移,二者增大导致CO2吸附量减少,从而影响底泥的碳化固化效果;长时间的碳化作用导致部分碳化产物发生变质反应,底泥强度随碳化时间的延长呈先增后减趋势;水化产物和碳化产物对土颗粒的包裹、胶结和孔隙填充是活性MgO碳化固化底泥的主要作用机理.
对疏浚底泥进行固化改良,使其转化为可再生利用的岩土工程材料,是目前处理底泥最有效的途径之
作为一项新兴技术,MgO碳化固化在土体固化改良方面的研究较少.鉴于此,本研究采用活性MgO碳化技术对疏浚底泥进行固化处理,分析活性MgO掺量(质量分数,文中涉及的掺量、含水率等除特别说明外均为质量分数)、土体含水率、压实度和碳化时间等对固化效果的影响,明确碳化作用下土体内部矿物组成、微观形貌和孔隙结构的演变特征,从微观层面探索活性MgO碳化固化疏浚底泥的作用机理.
疏浚底泥取自山东省济南市小清河疏浚治理工程,土样外观呈黄褐色.由于取样之前底泥已在河岸晾晒,土体的初始含水率不高,仅为17.9%.疏浚底泥的基本物理力学性能如
Natural water content(by mass)/% | Plastic limit(by mass)/% | Liquid limit(by mass)/% | Plasticity index | Optimum water conten(by mass)/% | Maximum dry density/(g·c | Unconfined compression strength/MPa |
---|---|---|---|---|---|---|
17.90 | 22.94 | 29.34 | 6.40 | 14.40 | 1.93 | 0.31 |

图1 疏浚底泥颗粒级配曲线
Fig.1 Particle gradation curve of dredged sediment
活性MgO为上海市奉贤区某化工厂生产,外观呈白色粉末状,平均粒径小于5 µm,比表面积为72
MgO | CaO | Fe2O3 | Al2O3 | IL |
---|---|---|---|---|
96.87 | 1.50 | 0.09 | 0.08 | 1.46 |
试验拌和水采用普通自来水.
采用自行研发的小型碳化釜(

图2 碳化釜示意图
Fig.2 Schematic diagram of carbonization kettle
采用不同活性MgO掺量(以底泥烘干土质量计)、土体含水率和压实度制备试件,并考虑碳化时间的影响,分析4种单一因素对底泥固化效果的影响,以确定合适的碳化固化条件.具体试验方案如
w(MgO)/% | Water content(by mass)/% | Compaction degree/% | Carbonization time/h |
---|---|---|---|
5/10/15/20/25 | 15 | 92 | 1.0 |
15 | 12/15/18/21/24 | 92 | 1.0 |
15 | 15 | 86/89/92/95/98 | 1.0 |
15 | 15 | 92 | 0.5/1.0/2.0/3.0/6.0 |
试件养护或碳化结束后,首先,开展无侧限抗压强度(fUCS)试验,分析不同因素对底泥强度的影响规律,探寻底泥碳化固化的最佳条件;然后,对最佳条件下制备的试件进行X射线衍射(XRD)、扫描电镜-能谱分析(SEM‑EDS)和压汞(MIP)试验,分析固化底泥的水化产物、碳化产物和微观结构;最后,从微观特征及演化规律方面探索活性MgO碳化固化作用机理. 总体试验流程图如

图3 总体试验流程图
Fig.3 Overall test flow chart
试样取自无侧限抗压强度试验破坏后的试件,将试件碎块放入40 ℃烘箱中,烘干后取出进行研磨,并过0.075 mm筛.采用日本理学Ultima Ⅳ型XRD,分析碳化固化底泥中的水化产物与碳化产物的变化情况.
试样取自无侧限抗压强度试验完成后试件断面未破坏部分,将其切削成约1 c
活性MgO掺量对试件无侧限抗压强度(fUCS)和CO2吸附能力的影响如

图4 活性MgO掺量对试件无侧压抗压强度和CO2吸附能力的影响
Fig.4 Effect of reactive MgO content on unconfined compression strength and CO2 absorption capacity of specimens
参照JTG D50 —2017《公路沥青路面设计规范》中道路基层、底基层材料7 d 无侧限抗压强度不小于3 MPa的要求,定义底泥无侧限抗压强度增长值(ΔfUCS)为碳化试件与养护7 d未碳化试件的强度之差.采用单位质量试件的CO2吸附量来对比各碳化试件对CO2的吸附能力.由
土体含水率对试件无侧限抗压强度(fUCS)和CO2吸附能力的影响如

图5 土体含水率对试件无侧限抗压强度与CO2吸附能力的影响
Fig.5 Effect of soil water content on unconfined compression strength and CO2 absorption capacity of specimens
由
由
土体压实度对试件无侧限抗压强度(fUCS)和CO2吸附能力的影响如

图6 土体压实度对试件无侧限抗压强度与CO2吸附能力的影响
Fig.6 Effect of compaction degree on unconfined compression strength and CO2 absorption capacity of specimens
由

图7 碳化时间对试件无侧限抗压强度与CO2吸附能力的影响
Fig.7 Effect of carbonization time on unconfined compression strength and CO2 absorption capacity of specimens
由
由
基于对底泥强度影响因素的分析,同时考虑材料的经济成本,本研究将10%活性MgO掺量、15%含水率、95%压实度,以及2.0 h碳化时间作为底泥碳化固化的最佳条件.针对天然疏浚底泥、最佳条件下的未碳化底泥和碳化底泥试样开展微观特性试验,明确碳化作用下底泥的矿物组成、微观形貌和孔隙结构的演变特征.
各试样的XRD图谱如

图8 各试样的XRD图谱
Fig.8 XRD patterns of samples
为进一步验证XRD对微观产物的分析,分别对未碳化和碳化底泥中的特征区域进行EDS扫描,结果如

图9 未碳化和碳化底泥的EDS能谱分析
Fig.9 EDS spectrum analyses of uncarbonated and carbonated sediment
天然疏浚底泥、未碳化和碳化底泥的SEM照片如

图10 天然疏浚底泥、未碳化和碳化底泥的SEM照片
Fig.10 SEM images of natural dredged sediment, uncarbonated and carbonated sediment
天然疏浚底泥、未碳化和碳化底泥的MIP试验结果如

图11 天然疏浚底泥、未碳化和碳化底泥的压汞试验结果
Fig.11 MIP test results of natural dredged sediment, uncarbonated and carbonated sediment
为深入研究底泥内部孔隙的分布特征,按孔径d将孔隙划分为5种类型:微细孔隙(fine pore,d≤0.04 μm)、小孔隙(small pore,0.04 μm<d≤0.40 μm)、中孔隙(mesopore,0.40 μm<d≤4.00 μm)、大孔隙(macropore,4.00 μm<d≤40.00 μm)和超大孔隙(ultra large pore,d>40.00 μm
综合上述微观特性试验结果,提出活性MgO碳化固化疏浚底泥的微观机制模型,如

图12 MgO碳化固化微观机制模型
Fig.12 Micro‑mechanism model of MgO carbonization and solidification
阶段Ⅰ 将活性MgO与底泥烘干土搅拌均匀后加入水,MgO迅速发生水化反应,产生大量M
阶段Ⅱ 向土体通入CO2后,CO2迅速被土体中的水分吸收形成CO.随后水化产物Mg(OH)2与CO发生一系列碳化反应,生成棱柱状三水菱镁石及部分花骨状水碳镁石和球碳镁石.碳化产物本身强度高,且随着这些晶体生成量的增加,它们之间相互交叉生长、搭建成稳定的骨架结构,并通过胶结和填充作用,将土颗粒凝聚成团,形成非常致密的微观结构,宏观上表现为碳化试件强度显著增强.此阶段,土体含水率与压实度是影响CO2运移的主要因素,并最终影响碳化产物数量及整体碳化效果.
阶段Ⅲ 随着CO2的持续通入,部分三水菱镁石发生变质反应,逐渐向水碳镁石和球碳镁石转化.由于水碳镁石和球碳镁石的晶体强度和骨架支撑能力不及三水菱镁石,试件强度出现下降现象.因此,对土体进行碳化作用时,须严格控制碳化时间,以达到更好的碳化固化效果.
(1)随着活性MgO掺量的增加,疏浚底泥碳化和未碳化试件的无侧限抗压强度(fUCS)均增大,且碳化试件强度增幅更为显著.同时,碳化试件的无侧限抗压强度增长值(ΔfUCS)和CO2吸附能力也明显提升.
(2)随着土体含水率的增加,疏浚底泥碳化和未碳化试件的fUCS均减小.土体中水分的增多引起CO2内移通道堵塞,导致碳化试件的CO2吸附能力降低,从而影响底泥的碳化固化效果.对于本文中的疏浚底泥碳化试件,其最佳含水率为15%.
(3)压实度对碳化固化底泥强度的增长具有双面影响.压实度的增大一方面使土体结构更加密实,底泥抗压强度得以提升;另一方面减小了土体结构孔隙率,影响CO2的吸附和运移,从而削弱底泥的碳化效果.对于本文中的疏浚底泥碳化试件,其最佳压实度为95%.
(4)在适宜的碳化时间内,疏浚底泥碳化试件的CO2吸附能力和碳化产物生成量随碳化时间的延长而提高,底泥强度也相应增强;但长时间的碳化作用使碳化产物三水菱镁石发生变质反应,逐渐向强度贡献较低的球碳镁石和水碳镁石转化,导致底泥强度降低.
(5)对于疏浚底泥未碳化试件,其水化产物水镁石与水化硅酸镁(M‑S‑H)凝胶的生成是强度提高的根本原因;而对于碳化试件,强度的提高主要归功于水镁石经碳化反应后形成的三水菱镁石、水碳镁石与球碳镁石.水化产物与碳化产物对土颗粒的包裹、胶结和填充作用,使土体微观结构更加稳定.
参考文献
KONG X H, ZHANG Z B, LIANG Y P, et al. Experimental study on solidified dredged sediment with MgO and industrial waste residue[J]. Construction and Building Materials, 2023,366:130105. [百度学术]
LANG L, LIU N, CHEN B. Strength development of solidified dredged sludge containing humic acid with cement, lime and nano‑SiO2[J]. Construction and Building Materials, 2020,230:116971. [百度学术]
钟煜清, 蔡光华, 王俊阁, 等. GGBS‑活性MgO碳化/稳定化锌污染土的强度及电导率特性试验研究[J]. 岩土工程学报, 2021, 43(增刊2):221‑224. [百度学术]
ZHONG Yuqing, CAI Guanghua, WANG Junge, et al. Strength and electrical conductivity characteristics of zinc contaminated soil carbonated/stabilized with GGBS‑reactive MgO[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(Suppl 2):221‑224. (in Chinese) [百度学术]
王倩, 武志红, 张国丽, 等. MgO活性对MgO‑SiO2‑H2O胶凝体系的影响[J]. 建筑材料学报, 2020, 23(4):771‑777. [百度学术]
WANG Qian, WU Zhihong, ZHANG Guoli, et al. Effect of MgO reactivity on MgO‑SiO2‑H2O cementitious system[J]. Journal of Building Materials, 2020, 23(4):771‑777. (in Chinese) [百度学术]
崔潮, 孙小惠, 王岚, 等. 活性MgO对碱-矿渣-偏高岭土基地聚物干缩特性的影响[J]. 建筑材料学报, 2023, 26(6):579‑586. [百度学术]
CUI Chao, SUN Xiaohui, WANG Lan, et al. Influence of activated MgO on drying shrinkage of alkali‑slag‑metakaolin based geopolymer[J]. Journal of Building Materials, 2023, 26(6):579‑586. (in Chinese) [百度学术]
HARRISON J. New cements based on the addition of reactive magnesia to Portland cement with or without added pozzolan[C]// Proceedings of the CIA Conference:Concrete in the Third Millennium. Brisbane:CIA, 2003. [百度学术]
SHI C J, WU Z M, CAO Z J, et al. Performance of mortar prepared with recycled concrete aggregate enhanced by CO2 and pozzolan slurry[J]. Cement and Concrete Composites, 2018, 86:130‑138. [百度学术]
曹伟达, 杨全兵. 碳化养护对钢渣-熟石灰固碳砖耐久性的影响[J]. 建筑材料学报, 2023, 26(3):324‑331. [百度学术]
CAO Weida, YANG Quanbing. Effect of carbonation curing on durability of carbon fixing steel slag‑slaked lime brick[J]. Journal of Building Materials, 2023, 26(3):324‑331. (in Chinese) [百度学术]
张丰, 莫立武, 邓敏. 碳化养护对钢渣混凝土强度和体积稳定性的影响[J]. 硅酸盐学报, 2016, 44(5):640‑646. [百度学术]
ZHANG Feng, MO Liwu, DENG Min. Effect of carbonization curing on mechanical strength and volume stability of steel slag concrete [J]. Journal of the Chinese Ceramic Society, 2016, 44(5):640‑646. (in Chinese) [百度学术]
曾海马, 刘志超, 王发洲. 碳化养护对大掺量钢渣砂浆的力学性能及显微结构的影响[J]. 硅酸盐学报, 2020, 48(11):1801‑1807. [百度学术]
ZENG Haima, LIU Zhichao, WANG Fazhou. Effect of carbonization curing on mechanical properties and microstructure of high volume steel slag mortar[J]. Journal of the Chinese Ceramic Society, 2020, 48(11):1801‑1807. (in Chinese) [百度学术]
冷勇, 余睿, 范定强, 等. 碳化再生粗骨料环保型超高性能混凝土的制备[J]. 建筑材料学报, 2022, 25(11):1185‑1189,1218. [百度学术]
LENG Yong, YU Rui, FAN Dingqiang, et al. Preparation of environmentally friendly UHPC containing carbonized recycled coarse aggregate[J]. Journal of Building Materials, 2022, 25(11):1185‑1189,1218. (in Chinese) [百度学术]
莫媛媛, 唐薇, 占宝剑, 等. 碳化再生微粉水泥基材料性能及其碳足迹评价[J]. 建筑材料学报,2023,26(11):1207‑1213. [百度学术]
MO Yuanyuan, TANG Wei, ZHAN Baojian, et al. Performance and carbon footprint evaluation of cement‑based composites incorporating carbonated recycled fine powder[J]. Journal of Building Materials, 2023,26(11):1207‑1213. (in Chinese) [百度学术]
蒋正武, 高文斌, 杨巧, 等. 低碳混凝土技术理念与途径思考[J]. 建筑材料学报,2023,26(11):1143‑1150. [百度学术]
JIANG Zhengwu, GAO Wenbin, YANG Qiao, et al. Technical principles and approaches for low carbon concrete[J]. Journal of Building Materials, 2023,26(11):1143‑1150. (in Chinese) [百度学术]
刘松玉, 曹菁菁, 蔡光华, 等. 压实度对MgO碳化土加固效果的影响及其机理研究[J]. 中国公路学报, 2018, 31(8):30‑38. [百度学术]
LIU Songyu, CAO Jingjing, CAI Guanghua, et al. Study on the influence of compaction degree on the reinforcement effect of MgO carbonated soil and its mechanism[J]. China Journal of Highway and Transport, 2018, 31(8):30‑38. (in Chinese) [百度学术]
黄涛, 方祥位, 张伟, 等. 活性氧化镁-微生物固化黄土试验研究[J]. 岩土力学, 2020, 41(10):3300‑3306,3316. [百度学术]
HUANG Tao, FANG Xiangwei, ZHANG Wei, et al. Experimental study on active magnesium oxide‑microbial solidified loess[J]. Rock and Soil Mechanics, 2020, 41(10):3300‑3306,3316. (in Chinese) [百度学术]
YI Y L, LISKA M, UNLUER C, et al. Carbonating magnesia for soil stabilization[J]. Canadian Geotechnical Journal, 2013, 50:899‑905. [百度学术]
王东星, 何福金, 朱加业. CO2碳化矿渣‑CaO‑MgO加固土效能与机理探索[J]. 岩土工程学报, 2019, 41(12):2197‑2206. [百度学术]
WANG Dongxing, HE Fujin, ZHU Jiaye. Study on efficiency and mechanism of CO2 carbonized slag‑CaO‑MgO reinforced soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12):2197‑2206. (in Chinese) [百度学术]
RAUSIS K, ĆWIK A, CASANOVA I. Phase evolution during accelerated CO2 mineralization of brucite under concentrated CO2 and simulated flue gas conditions[J]. Journal of CO2 Utilization, 2020, 37:122‑133. [百度学术]
王东星, 肖杰, 李丽华, 等. 基于碳化-固化技术的武汉东湖淤泥耐久性演变微观机制[J]. 岩土力学, 2019, 40(8):3045‑3053. [百度学术]
WANG Dongxing, XIAO Jie, LI Lihua, et al. Micro‑mechanism of durability evolution of sludge dredged from East Lake, Wuhan based on carbonation‑solidification technique[J]. Rock and Soil Mechanics, 2019, 40(8):3045‑3053. (in Chinese) [百度学术]
XIAO J M, LI H, HU Y R. Structure, formation, properties, and application of calcium and magnesium silicate hydrates system‑a review[J]. Journal of Wuhan University of Technology—Materials Science Edition, 2023, 38(3):604‑615. [百度学术]
孔祥辉, 崔帅, 胡文军, 等. 冻融作用下水泥稳定风化砂的劣化特征与机制[J]. 山东建筑大学学报, 2023, 38(1):80‑87. [百度学术]
KONG Xianghui, CUI Shuai, HU Wenjun, et al. Deterioration characteristics and mechanism of cement‑stabilized weathered sand under freeze‑thaw cycles[J]. Journal of Shandong Jianzhu University, 2023, 38(1):80‑87. (in Chinese) [百度学术]