轻质陶粒是一种人工制备的轻质原料,具有密度小、热导率低、强度高、耐酸耐腐蚀和抗冻抗震等特点,在石油压裂支撑剂、混凝土用轻质粗骨料和污水处理等领域有着广阔的应用前景.以陶粒为骨料制备的轻质高强混凝土具有质量轻和隔热保温性能好的优点,对于提高能源利用效率,降低建筑运行阶段碳排放具有重要意义.同时,轻质高强混凝土较高的比强度和优异的耐久性能,使其在高层建筑和大型桥梁等构筑物上也具有广阔的应用前
“高温烧胀”法是制备陶粒的主流工艺.在高温烧成阶段,陶粒中液相的形成和气体的产生是实现陶粒“烧胀”的关键所在.高质量陶粒的制备往往需要复杂的组成设计和精准的热处理制度控制,以保证陶粒在高温烧成阶段的液相生成量、液相黏度、表面张力与体系产气速率相匹
针对这一现状,国内外学者主要从原材料组成设计和热处理制度调控方面进行高质量陶粒的制备.Tang
粉煤灰漂珠(简称漂珠)是一种煤炭燃烧的副产物,具有高熔点和类球形空腔结
黄土取自衡阳市珠晖区某地,经干燥(110 ℃、24 h)、球磨及筛分处理,取粒径小于74 μm(200目)的粉体备用;漂珠来自河北省灵寿县金矿加工厂,粒径分别为2.54、0.85、0.63、0.17 mm;糖蜜产自山东鲁营化工有限公司,固含量为48%.黄土和漂珠的化学组成及X射线衍射(XRD)图谱见
Material | SiO2 | Al2O3 | Fe2O3 | CaO | K2O | TiO2 | MgO | Na2O | P2O5 | IL |
---|---|---|---|---|---|---|---|---|---|---|
Loess | 60.62 | 24.07 | 9.11 | 0.09 | 3.13 | 1.38 | 1.09 | 0.14 | 0.10 | 0.27 |
Floating bead | 59.02 | 26.43 | 5.55 | 1.53 | 2.83 | 0.98 | 1.30 | 1.73 | 0.20 | 0.43 |

图1 黄土及漂珠的XRD图谱
Fig.1 XRD patterns of loess and floating bead
将漂珠作为成孔模板,以黄土为成陶粉体,先采用盘式造粒机制备陶粒生料,再将其干燥和高温烧结即可得到试验用烧结黄土陶粒.

图2 新型轻质高强陶粒制备工艺流程图
Fig.2 New preparation process of lightweight and high‑strength ceramsit
固定漂珠粒径为0.85 mm,调整漂珠与黄土粉体的配比,以研究漂珠掺量对烧结黄土陶粒性能的影响.固定黄土粉体与漂珠的质量比为90∶10,选取4种粒径的漂珠,以研究漂珠粒径对烧结黄土陶粒性能的影响.
Sample No. | w(loess)/% | w(floating bead)/% | w(molasses)/% | |||
---|---|---|---|---|---|---|
2.54 mm | 0.85 mm | 0.63 mm | 0.17 mm | |||
L5 | 95 | 5 | 8-10 | |||
L10‑10 | 90 | 10 | 8-10 | |||
L10‑20 | 90 | 10 | 8-10 | |||
L10‑40 | 90 | 10 | 8-10 | |||
L10‑80 | 90 | 10 | 8-10 | |||
L15 | 85 | 15 | 8-10 | |||
L20 | 80 | 20 | 8-10 |
按照

图3 烧结黄土陶粒试样L10‑20的3D‑micro CT重构及二维切面图
Fig.3 3D‑micro CT reconstruction and two‑dimensional section pictures of sintered loess ceramsite sample L10‑20

图4 漂珠的SEM照片
Fig.4 SEM images of floating beads

图5 采用不同粒径漂珠制备的烧结黄土陶粒的SEM照片
Fig.5 SEM images of sintered loess ceramisites prepared by floating beads with different particle sizes

图6 采用不同掺量漂珠制备的烧结黄土陶粒的XRD图谱
Fig.6 XRD patterns of sintered loess ceramisites prepared with floating beads with different contents

图7 漂珠粒径及掺量对烧结黄土陶粒筒压强度的影响
Fig.7 Effect of particle size and content of floating bead on cylinder compressive strength of sintered loess ceramisites
由

图8 漂珠掺量对烧结黄土陶粒堆积密度、表观密度和真密度的影响
Fig.8 Effect of floating bead content on packing density, apparent density and true density of sintered loess ceramisites

图9 漂珠粒径对烧结黄土陶粒堆积密度、表观密度和真密度的影响
Fig.9 Effect of floating bead particle size on packing density , apparent density and true density of sintered loess ceramisites

图10 漂珠掺量及粒径对烧结黄土陶粒1 h吸水率的影响
Fig.10 Effect of content and particle size of floating beads on 1 h water absorption of sintered loess ceramisites
Sample No. | This paper | GB/T 17431.1—2010 | ||||
---|---|---|---|---|---|---|
Packing density/(kg· | Cylinder compressive strength/MPa | 1 h water absorbtion (by mass)/% | Packing density/(kg· | Cylinder compressive strength/MPa | 1 h water absorbtion (by mass)/% | |
L5 | 819.0 | 14.1 | 2.85 | 500-600 | 4.0 | ≤10.00 |
L10‑10 | 699.7 | 6.6 | 4.11 | 600-700 | 5.0 | ≤10.00 |
L10‑20 | 796.7 | 12.5 | 2.97 | 700-800 | 6.0 | ≤10.00 |
L10‑40 | 756.0 | 11.3 | 3.08 | 800-900 | 6.5 | ≤10.00 |
L10‑80 | 766.7 | 8.3 | 2.89 | |||
L15 | 745.3 | 10.9 | 3.06 | |||
L20 | 740.0 | 8.3 | 3.17 |
由于漂珠与黄土的化学组成相近(表2),且漂珠熔点高达1 450 ℃,因此,在高温烧结过程中,漂珠对于陶粒中产生的溶体有较好的抵抗作用,并能够维持漂珠自身孔隙结构的稳定性,CT扫描和SEM结果也证实了这一点.基于此,漂珠具备在高温下作为成孔模板使用的能力,在陶粒生料制备阶段,通过调节漂珠的粒径和掺量即可实现对烧结黄土陶粒气孔结构参数的调控和设计.

图11 烧结黄土陶粒典型漂珠衍生气孔的微观结构照片及其能谱分析
Fig.11 Microstructure images of typical floating bead derived pores in sintered loess ceramisites and EDS analysis

图12 漂珠粒径对烧结黄土陶粒总气孔率和闭孔气孔率的影响
Fig.12 Effect of particle size of floating beads on total porosity and closed porosity of sintered loess ceramisites
试验结果显示,采用漂珠作为成孔模板制备的烧结黄土陶粒能够很好地平衡陶粒“轻”与“强”的矛盾.原因主要包括3个方面:(1)良好的气孔结构特征.烧结黄土陶粒中的气孔主要源于粉煤灰漂珠,这些气孔多呈类球形结构,气孔间相互孤立,可以有效延迟荷载条件下陶粒结构应力集中的出现,即能够提高陶粒的承载能力,从而在“轻”的同时仍具有良好的力学强度.(2)莫来石晶须对陶粒的增强作用.高温热处理后,黄土陶粒的主晶相以莫来石为主,并且莫来石多发育成晶须状,对于提高陶粒的力学强度具有重要作用.(3)高温条件下液相的生成能够促进陶粒烧结的作用.陶粒生料中除了SiO2和Al2O3之外,还存在较多的Fe2O3、K2O、Na2O、TiO2和MgO等组分(表2),在高温条件下必然产生大量液相,这对于加速陶粒烧结、提高陶粒烧结程度具有积极作用,也会对陶粒的力学强度产生积极影响.
需要注意的是,当采用黄土作为成陶粉体时,高温烧结阶段漂珠具有维持自身孔隙结构稳定的特点,这在很大程度上归因于漂珠与成陶粉体化学组成相近.当成陶粉体与漂珠组成存在较大差异时,漂珠孔隙结构是否能够在高温烧结阶段维持稳定还有待试验验证,另外,漂珠与成陶粉体界面的反应机制也需要深入研究.
(1)以黄土为原料,粉煤灰漂珠为成孔模板,采用盘式造粒机先制备陶粒生料,再将其高温烧结制备出轻质、高强及低吸水率三者兼顾的高质量烧结黄土陶粒.其各项性能指标均远超GB/T 17431.2—2010《轻集料及其试验方法 第1部分: 轻集料》中轻质高强陶粒的要求.
(2)通过调节漂珠粒径及掺量可以实现对烧结黄土陶粒气孔结构特征进行设计和调控的目的.
(3)采用本工艺制备的烧结黄土陶粒具有相互孤立分布的类球形气孔结构特征,同时其表面还有1层致密壳层,为高质量陶粒的制备提供了结构依据.
参考文献
王小娟, 刘路, 贾昆程, 等. 陶粒泡沫混凝土的力学性能及吸能特性[J]. 建筑材料学报,2021, 24(1):207‑215. [百度学术]
WANG Xiaojuan, LIU Lu, JIA Kuncheng, et al. Mechanical properties and energy absorption characteristics of ceramsite foam concrete[J]. Journal of Building Materials,2021, 24(1):207‑215. (in Chinese) [百度学术]
王发洲.高性能轻集料混凝土研究与应用[D]. 武汉:武汉理工大学, 2003. [百度学术]
WANG Fazhou. Research on high performance lightweight aggregate concrete (HPLC) and its application[D]. Wuahn:Wuhan University of Technology, 2003. (in Chinese) [百度学术]
ZHANG Y, LI H, ABDELHADY A, et al. Effects of specimen shape and size on the permeability and mechanical properties of porous concrete[J]. Construction and Building Materials,2021, 266 :121074. [百度学术]
TIAN Y, SUN L J, LI H, et al. Laboratory investigation on effects of solid waste filler on mechanical properties of porous asphalt mixture[J]. Construction and Building Materials, 2021,279 :122436. [百度学术]
TANG P, JIANG S C, CHEN W, et al. Self‑foaming high strength artificial lightweight aggregates derived from solid wastes:Expansion mechanism and environmental impact[J]. Construction and Building Materials, 2023,370 :130698. [百度学术]
NGUYEN H P, MUELLER A, NGUYEN V T, et al. Development and characterization of lightweight aggregate recycled from construction and demolition waste mixed with other industrial by‑products[J]. Construction and Building Materials, 2021,313:125472. [百度学术]
LI X G, HE C H, LÜ Y, et al. Effect of sintering temperature and dwelling time on the characteristics of lightweight aggregate produced from sewage sludge and waste glass powder[J]. Ceramics International, 2021, 47:33435‑33443. [百度学术]
CHENG Y, LI J R, QIN C, et al. Template‑free route to fabricate extra‑lightweight ceramsite with a single large pore structure[J]. Ceramics International, 2023, 49:36446‑36457. [百度学术]
王建民, 李鹏飞, 冯楚祥, 等. 陶粒轻骨料与普通混凝土的黏结剪切性能[J]. 建筑材料学报,2022, 25(7):700‑707. [百度学术]
WANG Jianmin, LI Pengfei, FENG Chuxiang, et al. Interfacial shear performance of ceramsite lightweight aggregate and normal concrete cold joint[J]. Journal of Building Materials,2022,25(7):700‑707.(in Chinese) [百度学术]
ZOU J L, XU G R, LI G B. Ceramsite obtained from water and wastewater sludge and its characteristics affected by Fe2O3, CaO, and MgO[J]. Journal of Hazardous Materials, 2009, 165 (1/2/3):995‑1001. [百度学术]
LI X G, HE C H, LÜ Y, et al. Utilization of municipal sewage sludge and waste glass powder in production of lightweight aggregates[J]. Construction and Building Materials,2020,256:119413. [百度学术]
GONZÁLEZ‑CORROCHANO B, ALONSO‑AZCÁRATE J, RODRÍGYEZ L, et al. Valorization of washing aggregate sludge and sewage sludge for lightweight aggregates production[J]. Construction and Building Materials,2016,116 :252‑262. [百度学术]
李雪晨, 李辉, 白云, 等. 微波场下微珠对碱激发粉煤灰早期力学性能的影响[J]. 建筑材料学报, 2020, 23(4):816‑822. [百度学术]
LI Xuechen, LI Hui, BAI Yun, et al. Effect of fly ash micro beads on the early age mechanical property of alkali activated fly ash materials under microwave field[J].Journal of Building Materials, 2020,23(4):816‑822. (in Chinese) [百度学术]
钱潘悦, 龚明子, 黄斌, 等. 基于图像分析技术的粉煤灰颗粒形貌表征[J]. 建筑材料学报, 2023, 26(4):443‑448. [百度学术]
QIAN Panyue,GONG Mingzi, HUANG Bin, et al. Morphology characterization of fly ash particles based on image analysis technology[J].Journal of Building Materials,2023,26(4):443‑448. (in Chinese) [百度学术]