Fig.2XRD patterns of AAS cements at different ages
图3为不同龄期下矿渣和AAS水泥的29Si MAS NMR谱图.图3中:Qn (n=0、1、2、3、4)代表硅氧四面体的不同键合形式,分别为孤立硅氧四面体(Q0)、端链硅氧四面体(Q1)、链状硅氧四面体(Q2)、层状硅氧四面体(Q3)和三维网状硅氧四面体(Q4),其中Q和Q表示端链硅氧四面体的2种形态;Qn(mAl)(m≤n)表示有m个Al取代的硅氧四面体;Qslag代表矿渣原料峰.由图3可知:矿渣的主要特征峰呈弥散的宽峰,δ=-60.0~-90.0,表明矿渣原料中硅相为活性硅氧四面体结构[
Fig.329Si MAS NMR spectra of GGBS and AAS cements at different ages
图4为不同龄期下矿渣和AAS水泥的27Al MAS NMR谱图,其中Al(n,n=4、5、6)代表不同配位数的铝氧多面体.由图4可知:矿渣原料在δ=0~20.0处有1个很微小的峰,表明矿渣中含有很少量的六配位Al(Al(6));δ=20.0~100.0处的宽峰表明矿渣中主要为四配位Al,即矿渣铝相为活性铝氧四面体(Al(4))结构;27Al MAS NMR谱图中峰对称性较差,原因可能是Al的四极耦合相互作用以及低含量的六配位Al影响了峰型的对称性. 与矿渣原料相比,碱激发后反应产物的峰型和峰位有了较大变化:水化反应3~28 d时,δ=-5.0~20.0处出现了较强的Al(6)信号峰,中心峰位δ=10.0;在δ=-3.0处有1个小肩峰,该段化学位移信号峰应为单硫型水化硫铝酸钙(AFm)和水滑石的信号[
图10矿渣和AAS水泥反应2、4、24 h后的1H‑29Si CPMAS NMR谱图与24 h后的29Si MAS NMR谱图对比
Fig.101H‑29Si CPMAS NMRspectra for GGBS and AAS cement at 2, 4, 24 h compared with29Si MAS NMR spectrum at 24 h
图11为反应早期各阶段产物的27Al MAS NMR谱图.由图11可知:随着时间的推移,δ=10.0处的信号峰高度变高,强度增大,表明AFm和水滑石含量随着水化时间的推移而增多;δ=50.0~100.0处的主峰化学位移值由反应10 min时的63.0移动到反应24 h时的72.0,中心位移向低场移动,且峰型变窄,在δ=88.0处出现小肩峰.27Al MAS NMR谱图的变化表明:随着反应的进行,矿渣Al(4)结构解聚,一部分形成层状Al(6)结构,进而形成水滑石和AFm层状晶体,一部分进入硅氧四面体骨架形成了托贝莫来石层与Al(4)‑O‑Si四面体交联的结构,成为C‑A‑S‑H凝胶的主骨架;根据峰型宽窄可看出,C‑A‑S‑H凝胶结晶度优于矿渣原料,而劣于AFm和水滑石.
图11反应早期各阶段产物的27Al MAS NMR谱图
Fig.1127Al MAS NMR spectra of AAS products in early 24 h
BEN HAHA M, LOTHENBACH B, LE SAOUT G, et al. Influence of slag chemistry on the hydration of alkali‑activated blast‑furnace slag‑Part Ⅱ: Effect of Al2O3[J]. Cement and Concrete Research, 2012, 42(1):74‑83.[百度学术]
ZHU Xiaohong, LI Qing, XIONG Deyi, et al. Compositional‑[百度学术]
structural gradient change of C(N)‑A‑S‑H(I) gel in alkali‑activated slag after magnesium sulphate attack[J]. Journal of the Chinese Ceramic Society, 2021, 49(10):2276‑2285. (in Chinese)[百度学术]
ZUO Yibing, LIAO Yishun, YE Guang. Thermodynamic modelling of phase evolution in alkali‑activated slag cement upon combined attack of salts[J]. Journal of Building Materials, 2023, 26(1):7‑13. (in Chinese)[百度学术]
WAN Xiaomei, HAN Xiao, YU Qi, et al. Solidification of chloride ions in alkali‑activated slag paste[J]. Journal of Building Materials, 2021, 24(5):952‑960. (in Chinese)[百度学术]
5
PROVIS J L, BERNAL S A. Geopolymers and related alkali‑activated materials[J]. Annual Review of Materials Research, 2014, 44:299‑327.[百度学术]
SHI Di. Performances evolution and mechanisms of calcium silicate slag‑based alkali‑activated materials in severe environments[D]. Beijing:China Building Materials Academy, 2021. (in Chinese)[百度学术]
7
RICHARDSON I G. Tobermorite/jennite‑ and tobermorite/calcium hydroxide‑based models for the structure of C‑S‑H:Applicability to hardened pastes of tricalcium silicate, β‑dicalcium silicate, Portland cement, and blends of Portland cement with blast‑furnace slag, metakaolin, or silica fume[J]. Cement and Concrete Research, 2004, 34(9):1733‑1777.[百度学术]
8
RICHARDSON I G. Model structures for C‑(A)‑S‑H(I)[J]. Acta Crystallographica Section B:Structural Science, Crystal Engineering and Materials, 2014, 70(6):903‑923.[百度学术]
9
RICHARDSON I G, LI S. Composition and structure of an 18‑year‑old 5M KOH‑activated ground granulated blast‑furnace slag paste[J]. Construction and Building Materials, 2018, 168:404‑411.[百度学术]
10
WENG L, SAGOE‑CRENTSIL K. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis:Part I. Low Si/Al ratio systems[J]. Journal of Material Science, 2007, 42(9):2997‑3006.[百度学术]
11
SAGOE‑CRENTSIL K, WENG L. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis:Part II. High Si/Al ratio systems[J]. Journal of Material Science, 2007, 42(9):3007‑3014.[百度学术]
12
DUXSON P, FERNÁNDEZ‑JIMÉNEZ A, PROVIS J L, et al. Geopolymer technology:The current state of the art[J]. Journal of Material Science, 2006, 42(9):2917‑2933.[百度学术]
WANG Yonghui, CHEN Peiyuan, ZHANG Liheng, et al. Effect of MgO/sodium silicate composite activator on hydration and mechanical properties of alkali‑activated slag materials[J]. Journal of Building Materials, 2023, 26(2):186‑192. (in Chinese)[百度学术]
14
HOU D S, WU C, YANG Q R, et al. Insights on the molecular structure evolution for tricalcium silicate and slag composite:From29Si and27Al NMR to molecular dynamics[J]. Composites Part B:Engineering, 2020, 202:108401.[百度学术]
15
SOUAYFAN F, ROZIERE E, PARIS M, et al.29Si and27Al MAS NMR spectroscopic studies of activated metakaolin‑slag mixtures[J]. Construction and Building Material, 2022, 322:126415.[百度学术]
16
MYERS R J, BERNAL S A, GEHMAN J D, et al. The role of Al in cross‑linking of alkali‑activated slag cements[J]. Journal of the American Ceramic Society, 2015, 98(3):996‑1004.[百度学术]
17
BERNAL S A, PROVIS J L, WALKLEY B, et al. Gel nanostructure in alkali‑activated binders based on slag and fly ash, and effects of accelerated carbonation[J]. Cement and Concrete Research, 2013, 53:127‑144.[百度学术]
18
WALKLEY B, PROVIS J L. Solid‑state nuclear magnetic resonance spectroscopy of cements[J]. Material Today Advance, 2019, 1:100007.[百度学术]
19
PUSTOVGAR E, SANGODKAR R P, ANDREEV A S, et al. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates[J]. Nature Communication, 2016, 7:10952.[百度学术]
20
LE SAOÛT G, BEN HAHA M, WINNEFELD F, et al. Hydration degree of alkali‑activated slags:A29Si NMR study[J]. Journal of the American Ceramic Society, 2011, 94(12):4541‑4547.[百度学术]
LI Ning. Reactivity evaluation of raw materials and composition design for alkali‑activated slag cements and concretes[D]. Changsha:Hunan University, 2020. (in Chinese)[百度学术]
ZHU Xiaohong, LI Qing, KANG Xiaojuan, et al. Nano‑structural change of C(N)‑A‑S‑H gel in alkali‑activated slag pastes subjected to wetting‑drying cyclic sulphate attack[J]. Journal of the Chinese Ceramic Society, 2021, 49(11):2529‑2537. (in Chinese)[百度学术]
XIAO Jianmin, HU Yaru. Microstructure of magnesium silicate hydrates in long curing age[J]. Journal of the Chinese Ceramic Society, 2022, 50(8):2221‑2229. (in Chinese)[百度学术]