摘要
通过无侧限抗压强度和扫描电镜试验,研究了无机填料种类和粒径对水泥固化泥炭土强度的影响.结果表明:水泥固化泥炭土强度随着石英砂掺量的增加呈先增加后降低的趋势,20%石英砂掺量下水泥固化泥炭土强度最高;当石英砂粒径d>1.0 mm时,水泥固化泥炭土强度提升有限,而当d<0.5 mm时,水泥固化泥炭土强度提升明显;高岭土颗粒可有效填充泥炭土孔隙,有利于水泥联结无机填料和泥炭土颗粒,且水泥联合高岭土固化泥炭土的强度明显优于水泥联合石英砂;当泥炭土含水率为600%,高岭土掺量从5%增至30%时,28 d龄期水泥固化泥炭土强度的增幅为58.5%~116.6%.
化学固化生成的水化硅酸钙(C‑S‑H)能有效填充土体孔隙,此方法被广泛用于提升软土地基的强
国内外学者开展了大量利用无机填料提升固化土强度的研究.Timoney
本文通过无侧限抗压强度和扫描电镜(SEM)试验,研究了无机填料种类和粒径对水泥固化泥炭土(后文简称固化泥炭土)强度的影响.
综合考虑固化泥炭土强度的提升效果和经济性,选取的无机填料为石英砂和细粒土(高岭土和火山灰).石英砂的中值粒径D50、最大孔隙比、最小孔隙比、比重和有效内摩擦角分别为0.85 mm、0.73、0.38、2.65、30.7°.高岭土的直径、比重、压缩指数、回弹指数和有效内摩擦角分别为40 μm(1250目)、2.65、0.25、0.05和23.0°.
马来西亚沙捞越第二干道项目,位于马来西亚东岛沙捞越州西南部,新建道路的设计时速为100 km/h,要求7 a后沉降不超过25 cm.场地泥炭土富含植物根系,厚度普遍在3 m以上,最深可达11 m;泥炭土含水率wH(质量分数,文中涉及的含量、掺量等除特殊说明外均为质量分数)和有机质含量wO分别为400%~1 100%和40%~95%.以水泥掺量wC、石英砂掺量wS、石英砂粒径d、wO为变量,在给定泥炭土含水率w(400%、600%和800%)下,水泥联合石英砂固化泥炭土试验方案见
Level | wC/% | wS/% | d/mm | wO/% |
---|---|---|---|---|
1 | 10 | 10 | <0.5 | 40 |
2 | 20 | 15 | 0.5-1.0 | 60 |
3 | 30 | 20 | >1.0 | 80 |
wH | wO | wC | wK |
---|---|---|---|
400, 600 | 60 | 15, 18, 20, 25, 28 | 5, 10, 15, 20, 30 |
当wH=800%时,固化泥炭土的无侧限抗压强度见

图1 wH=800%固化泥炭土无侧限抗压强度
Fig.1 Unconfined compressive strength of solidified peat with wH=800%
当wH=600%时,固化泥炭土的无侧限抗压强度见

图2 wH=600%固化泥炭土无侧限抗压强度
Fig.2 Unconfined compressive strength of solidified peat with wH=600%
当wH=400%时,固化泥炭土的无侧限抗压强度见

图3 wH=400%固化泥炭土无侧限抗压强度
Fig.3 Unconfined compressive strength of solidified peat with wH=400%
用ki表示因素第i个水平条件下强度的平均值;R为极差,即该列ki最大与最小值的差值,且R值越大,该因素对固化泥炭土强度影响越大.不同含水率下水泥联合无机填料固化泥炭土强度的影响因素相同,限于篇幅,仅给出了wH=600%、t=7 d固化泥炭土的强度分析,结果见
Factor | k1 | k2 | k3 | R |
---|---|---|---|---|
wC | 45.17 | 129.22 | 248.51 | 203.34 |
wS | 139.12 | 140.03 | 143.75 | 4.63 |
d | 153.08 | 134.72 | 135.09 | 18.38 |
wO | 107.86 | 157.26 | 157.77 | 49.91 |
当d<1.0 mm时,不同石英砂掺量下固化泥炭土的强度见

图4 不同石英砂掺量下固化泥炭土的无侧限抗压强度
Fig.4 Effects of wS on unconfined compressive strength of solidified peat(d<1.0 mm)
由前文可知,填料颗粒的粒径对固化泥炭土强度的影响显著,因此选择颗粒粒径更小的高岭土和火山灰开展固化试验.
泥炭土wH=500%、wO=80%,设置水泥联合石英砂固化泥炭土的wS=20%、wC=30%,水泥联合高岭土固化泥炭土的wS=20%、wK=30%.水泥联合石英砂和高岭土固化泥炭土的强度见

图5 水泥联合石英砂和高岭土固化泥炭土的强度
Fig.5 Unconfined compressive strength of cement combined with quartz sand and kaolin solidified peat
泥炭土wH=400%、wO=60%,设置wC=15%,wK和火山灰掺量wVA均为5%、10%、15%、20%、30%.龄期为7 d水泥联合石英砂和火山灰固化泥炭土的强度见

图6 龄期为7 d水泥联合高岭土和火山灰固化泥炭土的强度
Fig.6 Unconfined compressive strength of cement combined with quartz sand and volcanic ash solidified peat at 7 d
随着高岭土掺量的增加,泥炭土含水率迅速降低,但其降低的速率逐渐放缓.泥炭土含水率越高,掺高岭土后含水率降低的幅度越大.当wH为400%、600%时,wK=30%水泥联合高岭土固化泥炭土的含水率降幅分别为60%、68%.不同高岭土掺量下水泥联合高岭土固化泥炭土的强度见

图7 不同高岭土掺量下水泥联合高岭土固化泥炭土的强度
Fig.7 Strength of cement combined kaolin solidified peat with different kaolin contents
通过C‑S‑H凝胶的附着生长评估填料粒径对固化泥炭土强度的影响.龄期为28 d,不同石英砂粒径下固化泥炭土的SEM照片见

图8 不同石英砂粒径下28 d固化泥炭土的SEM照片
Fig.8 SEM images of solidified peat with different particle size of quartz sand at 28 d
(1)控制水泥联合石英砂固化泥炭土强度的影响因素依次为水泥掺量wC、有机质含量wO、石英砂粒径d和掺量wS.当d>1.0 mm时,水泥固化泥炭土的强度提升有限,而d0.5 mm的石英砂能明显提升水泥固化泥炭的土强度.石英砂粒径越小,越容易填充泥炭土的孔隙,利用水泥联结石英砂和泥炭土颗粒,可形成连续土骨架.
(2)随着石英砂掺量的增加,水泥固化泥炭土的强度呈现出先增加后降低的趋势;当石英砂掺量为20%时,水泥固化泥炭土强度出现峰值,即石英砂最优掺量为20%.
(3)水泥联合高岭土固化泥炭土的强度仍比石英砂工况高3.9%~8.2%;水泥联合高岭土固化泥炭土强度比火山灰工况高10.8%~33.7%.可见水泥联合高岭土固化泥炭土的强度明显高于石英砂和火山灰工况.
(4)随着高岭土掺量的增加,水泥联合高岭土固化泥炭土强度增幅明显,且水泥掺量越大,强度增幅越高.当泥炭土含水率为400%、600%,高岭土掺量从5%增至30%时,固化泥炭土28 d强度增幅分别为62.7%~81.7%、58.5%~116.6%.高岭土颗粒粒径小且比表面积大,能有效降低泥炭土含水率和填充泥炭土孔隙,进而提升水泥固化泥炭土的强度.
参 考 文 献
俞家人, 陈永辉, 陈庚,等. 地聚物固化软黏土的力学特征及机理分析[J]. 建筑材料学报, 2020, 23(2):130‑137. [百度学术]
YU Jiaren, CHEN Yonghui, CHEN Geng, et al. Mechanical behaviour of geopolymer stabilized clay and its mechanism[J]. Journal of Building Materials, 2020, 23(2):130‑137. (in Chinese) [百度学术]
AXELSSON K, JOHANSSON S E, ANDERSSON R. Stabilization of organic soils by cement and puzzolanic reactions‑ feasibility study of report[R]. Linkoping:Swedish Deep Stabilization Research Centre, 2002. [百度学术]
王荣, 董俊全, 范衍琦,等. 超高含水率泥炭土的固化机理及强度特性[J]. 建筑材料学报, 2022, 25(10):1047‑1054. [百度学术]
WANG Rong, DONG Junquan, FAN Yanqi, et al. Solidification mechanism and strength characteristics of peat with ultra‑high water content[J]. Journal of Building Materials, 2022, 25(10):1047‑1054. (in Chinese) [百度学术]
TIMONEY M J, MCCABE B, BELL A L. Experiences of dry soil mixing in highly organic soils[J]. Proceedings of the ICE‑Ground Improvement, 2012, 165(1):3‑14. [百度学术]
曹净, 孔程, 李松坡. 腐殖酸对泥炭土强度的影响及其机理分析[J].安全与环境学报, 2021(5):2493‑2499. [百度学术]
CAO Jing, KONG Cheng, LI Songpo. Effect of humic acid on strength of peat soil and its mechanism analysis[J]. Journal of Safety and Environment, 2021(5):2493‑2499. (in Chinese) [百度学术]
陈永辉, 陈明玉, 张婉璐, 等. 矿渣-水泥固化碱渣土的工程特性[J]. 建筑材料学报, 2017, 20(4):582‑585, 597. [百度学术]
CHEN Yonghui, CHEN Mingyu, ZHANG Wanlu, et al. Engineering properties of solidified soda residue with GGBS and cement[J]. Journal of Building Materials, 2017, 20(4):582‑585, 597. (in Chinese) [百度学术]
WANG J Y, LI M, WANG Z L, et al. The benefits of using manufactured sand with cement for peat stabilisation:An experimental investigation of physico‑chemical and mechanical properties of stabilised peat [J]. Bulletin of Engineering Geology and the Environment, 2020, 79(8):4441‑4460. [百度学术]
WANG Z L, LI M, SHEN L F, et al. Incorporating clay as a natural and enviro‑friendly partial replacement for cement to reduce carbon emissions in peat stabilisation:An experimental investigation[J]. Construction and Building Materials, 2022, 353:128901. [百度学术]
LEONG S W, ROSLAN H, FAISL A. Improved strength and reduced permebility of stablized peat:Focus on application of kaolin as a pozzolanic additive[J]. Construction and Building Materials, 2013, 40:783‑792. [百度学术]
DEHGHANBANADAKI A, AHMAD K, ALI N. Influence of natural fillers on shear strength of cement treated peat[J]. Gradevinar, 2013, 65(7):633‑640. [百度学术]