摘要
通过凝结时间、流动度、孔溶液pH值、抗折强度、抗压强度、吸水率、软化系数、水化热和水化产物分析测试,探究了磷建筑石膏(CPG)掺量对石膏矿渣水泥水化过程与耐水性能的影响.结果表明:随着CPG掺量的增加,石膏矿渣水泥的凝结时间缩短,流动度减小,吸水率与3 d水化累计放热量均增大;水泥净浆孔溶液的pH值在水化早期快速下降,56 d时保持不变;当CPG掺量从40%增加到70%时,56 d水泥净浆孔溶液的pH值从11.02减小到10.62,水泥胶砂的软化系数从0.98减小到0.91,主要水化产物均为二水石膏和钙矾石,并且钙矾石的含量随着CPG掺量的增加而减少.
磷石膏(PG)是湿法制备磷酸时产生的工业副产品,主要成分为二水硫酸钙(CaSO4·2H2O),同时含有少量可溶性磷(P2O5)、氟化物和有机物等杂质,呈较强的酸
磷石膏的强度低、耐水性差,通常不单独作为胶凝材料使用。当其与粒化高炉矿渣和碱性激发剂复合使用时,能显著改善上述缺
煅烧作为最常用的改性方式,能有效除去磷石膏中的杂质.Liu
本文通过研究磷建筑石膏掺量(质量分数,文中涉及的掺量、组成、胶砂比等除特别说明外均为质量分数或质量比)对石膏矿渣水泥水化过程与耐水性能的影响,以期为石膏矿渣水泥的工程实践提供新的思路.
磷建筑石膏来自湖北楚星化工股份有限公司,pH值为5.6.S95级粒化高炉矿渣(GGBS)产自西柏能源有限公司,密度为2.88 g/c
Material | CaO | SiO2 | Al2O3 | MgO | SO3 | Fe2O3 | Na2O | K2O | P2O5 | IL | |
---|---|---|---|---|---|---|---|---|---|---|---|
CPG | 43.03 | 9.51 | 0.99 | 0.66 | 36.35 | 0.40 | 0.17 | 0.29 | 1.91 | 0.86 | 5.75 |
GGBS | 44.02 | 29.25 | 12.38 | 7.79 | 2.07 | 0.92 | 0.56 | 0.47 | 0.04 | 0.16 | 0.40 |
SL | 97.10 | 0.38 | 0.25 | 1.75 | 0.35 | 0.08 | 0 | 0 | 0.01 | 0.05 | 0.03 |

图1 原材料的XRD图谱
Fig.1 XRD patterns of raw materials
试验用砂为ISO标准砂,胶砂比为1∶2.所用聚羧酸系减水剂(PCE)减水率为35%.缓凝剂为蛋白类石膏缓凝剂.憎水剂采用有机硅憎水剂,固含量为55%.拌和水为武汉市自来水.水泥净浆的水胶比为0.4,其余配合比如
Sample | CPG | GGBS | SL | PCE | Retarder | Hydrophobic agent |
---|---|---|---|---|---|---|
CPG40 | 40.00 | 58.00 | 2.00 | 0.40 | 0.10 | 0.25 |
CPG50 | 50.00 | 48.00 | 2.00 | 0.40 | 0.10 | 0.25 |
CPG60 | 60.00 | 38.00 | 2.00 | 0.40 | 0.10 | 0.25 |
CPG70 | 70.00 | 28.00 | 2.00 | 0.40 | 0.10 | 0.25 |
石膏矿渣水泥净浆的凝结时间参照GB/T 17669.4—1999《建筑石膏 净浆物理性能的测定》进行测定.水泥胶砂流动度参照GB/T 2419—2009《水泥胶砂流动度测定方法》进行测定.采用固液萃取法提取水泥净浆孔溶液,在(20±1) ℃条件下,使用pH计测试孔溶液的pH值,测试龄期为56 d.
力学性能试验参照GB/T 17671—2021《水泥胶砂强度检验方法(ISO法)》进行.试件尺寸为40 mm×40 mm×160 mm,在(20±2) ℃、相对湿度90%以上的条件下标准养护24 h后脱模,继续在标准养护条件下养护至相应龄期后测定其抗折强度与抗压强度,加载速率分别为(50±10) N/s和(2.4±0.2) kN/s,测试龄期为56 d.
试件吸水率参考JC/T 899—2016《混凝土路缘石》进行测定,将标准养护28 d的试件烘干称重(m0)后再放入水中浸泡1 d,取出后用拧干的湿毛巾擦去其表面附着水后再次称重(m1).
(1) |
软化系数测定方法如下:选取2组水泥胶砂试件,一组测定其标准养护56 d时的抗压强度(f0);另一组标准养护28 d再浸水28 d,测定其抗压强度(f1).采用
(2) |
水化热采用美国TA公司生产的TAM AIR型八通道等温量热仪进行测试,测试温度为(20±1) ℃,测试龄期为3 d.采用日本理学公司生产的SmartLab SE型XRD测试试样的晶体结构(铜靶).
CPG掺量对水泥净浆凝结时间的影响如

图2 CPG掺量对水泥净浆凝结时间的影响
Fig.2 Effect of CPG content on setting time of cement paste
掺入CPG后,一方面CPG迅速溶于水中,使得液相中C
CPG掺量对水泥胶砂流动度的影响如

图3 CPG掺量对水泥胶砂流动度的影响
Fig.3 Effect of CPG content on fluidity of cement mortar
CPG中的半水石膏颗粒遇水后容易形成絮状结构,包裹大量水分,降低体系中的自由水含
水泥净浆孔溶液的pH值如

图4 水泥净浆孔溶液的pH值
Fig.4 pH value of pore solution of cement paste
体系中的熟石灰溶于水中,释放出大量O

图5 CPG掺量对水泥胶砂强度的影响
Fig.5 Effect of CPG content on strength of cement mortar
(1)在1、3 d龄期,水泥胶砂的抗折强度随着CPG掺量的增加逐渐提高.在7、28 d龄期,水泥胶砂的抗折强度随着CPG掺量的增加先提高后降低.在56 d龄期,水泥胶砂的抗折强度随着CPG掺量的增加不断降低.在龄期为3 d、CPG掺量为40%时,水泥胶砂的抗折强度为2.5 MPa;当CPG掺量从40%增加到70%时,水泥胶砂的抗折强度提高了196%.当龄期为28 d时,水泥胶砂的抗折强度在CPG掺量为60%时达到最大值,为13.5 MPa.
(2)各龄期水泥胶砂抗压强度的变化规律与抗折强度类似,在水化早期,随着CPG掺量的增加,水泥胶砂的抗压强度不断增大,但随着龄期的延长,CPG掺量的增加反而不利于水泥胶砂强度的发展.
硬化基体的强度主要由水化产物的生成与孔结构控制.此胶凝材料体系的水化主要可以分为两个过程:一方面是磷建筑石膏的水化,另一方面是矿渣在体系中不断溶解并与二水石膏发生反应.CPG的主要矿物成分为半水石膏,在水化早期,CPG中的半水石膏颗粒在水中溶解并迅速析出二水石膏晶体,二水石膏晶体之间交叉搭接,为早期硬化基体提供强度.随着水化的不断进行,矿渣在碱性条件下解聚,并与体系中的二水石膏反应生成钙矾石与C‑(A)‑S‑H凝胶,水化产物不断增加.针棒状的钙矾石会与未水化的二水石膏相互搭接形成骨架,并与C‑(A)‑S‑H凝胶胶结形成致密的三维空间结
CPG掺量对水泥胶砂吸水率的影响如

图6 CPG掺量对水泥胶砂吸水率的影响
Fig.6 Effect of CPG content on water absorption of cement mortar
CPG水化生成的二水石膏晶体之间骨架结构疏松,存在许多孔隙,不利于基体的密
石膏制品的耐水性较差,不利于实际工程中的推广应用.本文对水泥胶砂浸水28 d后的软化系数进行了测试.CPG掺量对水泥胶砂软化系数的影响如

图7 CPG掺量对水泥胶砂软化系数的影响
Fig.7 Effect of CPG content on softening coefficient of cement mortar
二水石膏能在水中溶解,这是石膏制品耐水性差的主要原因.矿渣玻璃体拥有较高的潜在活性,在碱性条件下矿渣的活性被激发,其Si—O—Si与Al—O键断裂并参与水化反应,生成钙矾石与C‑(A)‑S‑H凝
CPG掺量对水泥水化热的影响如

图8 CPG掺量对水泥净浆水化热的影响
Fig.8 Effect of CPG content on hydration heat of cement paste
由
CPG水化迅速,而矿渣在早期并不会迅速溶解,因此随着CPG掺量的增加,水泥净浆在诱导期的水化放热速率升

图9 水泥净浆水化产物的XRD图谱
Fig.9 XRD patterns of hydration products of cement paste
(1)在3 d龄期时,各试样钙矾石衍射峰的强度均较弱,二水石膏的衍射峰强度均显著高于钙矾石,且随着CPG掺量的增加,二水石膏的衍射峰强度不断增大.这表明在水化早期,水泥的水化产物主要为二水石膏,而体系中矿渣的反应程度较低,水化产物中钙矾石与C‑(A)‑S‑H凝胶的含量较少,基体的强度主要由二水石膏提供;随着体系中CPG掺量的增加,水化产物中二水石膏的含量不断增加,基体的强度不断提高,这与水泥胶砂3 d强度的变化规律一致.
(2)在28 d龄期时,各试样的二水石膏衍射峰强度均显著降低,同时出现明显的钙矾石衍射峰,当CPG掺量从40%增加到70%时,钙矾石的衍射峰强度降低.这表明随着养护龄期的延长,二水石膏继续参与水化反应生成了钙矾石.但在体系中CPG是过量的,水化产物中有大量二水石膏剩余,且较低的pH值可能会延缓二水石膏与矿渣的继续水化,因此随着CPG掺量增加,钙矾石的含量减少.研究表明,水化产物中钙矾石与C‑(A)‑S‑H凝胶对石膏的包裹可使石膏基复合胶凝材料具有较好的耐水性
水泥与水拌和后,体系中的CPG迅速水化生成二水石膏,同时熟石灰溶于水中,为矿渣的溶解提供碱性环境.体系中的有机硅憎水剂会吸附在水泥颗粒表面,随着CPG与矿渣的水化,体系中的水分被消耗,有机硅分子可能发生水解与缩聚反应,在水化产物表面形成疏水层,影响水分的传输,阻碍矿渣与二水石膏的反应,抑制水泥的早期水
(3) |
(4) |
(5) |
(1)掺入磷建筑石膏(CPG)会缩短水泥净浆的凝结时间,减小水泥胶砂的流动度.当CPG掺量为70%时,水泥净浆的初凝时间仅15 min.当CPG掺量从40%增加到70%时,水泥胶砂流动度从251 mm减小到153 mm.
(2)在7 d龄期内,水泥净浆孔溶液的pH值快速下降,28 d后基本保持不变.当CPG掺量从40%增加到70%时,水泥净浆孔溶液在56 d龄期时的pH值从11.02减小到10.62.
(3)随着CPG掺量的增大,水泥胶砂的吸水率不断增大,软化系数不断减小.当CPG掺量从40%增加到70%时,水泥胶砂的吸水率从2.3%增大到3.0%,浸水28 d后的软化系数从0.98减小为0.91.
(4)当CPG掺量从40%增加到70%时,水泥净浆的3 d水化放热量从78.4 J/g逐渐增大到121.4 J/g,水泥的主要水化产物均为二水石膏和钙矾石,钙矾石的含量逐渐减少.
参考文献
CHERNYSH Y, YAKHNENKO O, CHUBUR V, et al. Phosphogypsum recycling: A review of environmental issues, current trends, and prospects[J]. Applied Sciences, 2021, 11(4):1575. [百度学术]
LI B X, LI L, CHEN X, et al. Modification of phosphogypsum using circulating fluidized bed fly ash and carbide slag for use as cement retarder[J]. Construction and Building Materials, 2022, 338:127630. [百度学术]
MOHAMMAD I, RANA A S. Incorporation of phosphogypsum with cement in rigid pavement:An approach towards sustainable development[J/OL]. Materials Today:Proceedings, 2023[20230629]. https://doi.org/10.1016/j.matpr.2023.03.586. [百度学术]
NOSOUHIAN F, FINCAN M, SHANAHAN N, et al. Effects of slag characteristics on sulfate durability of Portland cement‑slag blended systems[J]. Construction and Building Materials, 2019, 229:116882. [百度学术]
DING S, SHUI Z H, CHEN W, et al. Properties of supersulphated phosphogysumslag cement(SSC) concrete[J]. Journal of Wuhan University of Technology‑Materials Science Edition, 2014, 29(1):109‑113. [百度学术]
徐方,李恒,孙涛,等.基于分子动力学模拟的过硫磷石膏矿渣水泥组成设计[J]. 复合材料学报, 2022, 39(6):2821‑2828. [百度学术]
XU Fang, LI Heng, SUN Tao, et al. Composition design of excess‑sulfate phosphogypsum slag cement based on molecular dynamics simulation[J]. Acta Materiae Compositae Sinica, 2022, 39(6):2821‑2828. (in Chinese) [百度学术]
DJAYAPRABHA H S, NGUYEN H A. Utilizing phosphogypsum waste to improve the mechanical and durability performances of cement‑free structural mortar containing ground granulated blast furnace slag and calcium oxide[J]. Journal of Building Engineering, 2023, 72:106557. [百度学术]
徐方,李恒,孙涛,等. 过硫磷石膏矿渣水泥路面基层材料微观结构及力学性能[J]. 建筑材料学报, 2022, 25(3):228‑234, 277. [百度学术]
XU Fang, LI Heng, SUN Tao, et al. Microstructure and mechanical properties of excess‑sulfate phosphogypsum slag cementitious road base material[J]. Journal of Building Materials, 2022, 25(3):228‑234, 277. (in Chinese) [百度学术]
WANG Z Y, SHUI Z H, SUN T, et al. Reutilization of gangue wastes in phosphogypsum‑based excess‑sulphate cementitious materials:Effects of wet co‑milling on the rheology, hydration and strength development[J]. Construction and Building Materials, 2023, 363:129778. [百度学术]
CHENG X W, LONG D, ZHANG C, et al. Utilization of red mud, slag and waste drilling fluid for the synthesis of slag‑red mud cementitious material[J]. Journal of Cleaner Production, 2019, 238:117902. [百度学术]
LIU S H, FANG P P, REN J, et al. Application of lime neutralised phosphogypsum in supersulfated cement[J]. Journal of Cleaner Production, 2020, 272:122660. [百度学术]
LIU Y K, ZHANG Q L, CHEN Q S, et al. Utilisation of water‑washing pre‑treated phosphogypsum for cemented paste backfill[J]. Minerals, 2019, 9(3):175. [百度学术]
LIU S H, WANG L, YU B Y. Effect of modified phosphogypsum on the hydration properties of the phosphogypsum‑based supersulfated cement[J]. Construction and Building Materials, 2019, 214:9‑16. [百度学术]
LIU S H, OUYANG J Y, REN J. Mechanism of calcination modification of phosphogypsum and its effect on the hydration properties of phosphogypsum‑based supersulfated cement[J]. Construction and Building Materials, 2020, 243:118226. [百度学术]
陈雪梅. 磷建筑石膏在碱性环境中的水化硬化和微结构调控研究[D]. 南京:东南大学, 2021. [百度学术]
CHEN Xuemei. Study on the hydration hardening mechanism and microstructure regulation of hemihydrate phosphgypsum under alkaline condition[D]. Nanjing:Southeast University, 2021. (in Chinese) [百度学术]
LIU C B, GAO J M, TANG Y B, et al. Early hydration and microstructure of gypsum plaster revealed by environment scanning electron microscope[J]. Materials Letters, 2019, 234:49‑52. [百度学术]
WU Q Y, XUE Q Z, YU Z Q. Research status of super sulfate cement[J]. Journal of Cleaner Production, 2021, 294:126228. [百度学术]
MATSCHEI T, BELLMANN F, STARK J. Hydration behaviour of sulphate‑activated slag cements[J]. Advances in Cement Research, 2005, 17(4):167‑178. [百度学术]
彭晖,李一聪,罗冬,等. 碱激发偏高岭土/矿渣复合胶凝体系反应水平及影响因素分析[J]. 建筑材料学报, 2020, 23(6):1390‑1397. [百度学术]
PENG Hui, LI Yicong, LUO Dong, et al. Analysis of reaction level and factors of alkali activated metakaolin/GGBFS[J]. Journal of Building Materials, 2020, 23(6):1390‑1397. (in Chinese) [百度学术]
XU J, XU F, JIANG Y, et al, Mechanical properties and soluble phosphorus solidification mechanism of a novel high amount phosphogypsum‑based mortar[J]. Construction and Building Materials, 2023, 394:132176. [百度学术]
林宗寿,刘丽娟,章健. 过硫磷石膏磷渣水泥的开发研究[J]. 武汉理工大学学报, 2020, 42(3):17‑22. [百度学术]
LIN Zongshou, LIU Lijuan, ZHANG Jian. Studies in excess‑sulfate phosphogypsum‑slag cement[J]. Journal of Wuhan University of Technology, 2020, 42(3):17‑22. (in Chinese) [百度学术]
李龙,李北星,杨洋.无机胶凝材料复合改性磷建筑石膏的研究[J]. 非金属矿, 2022, 45(1):102‑106. [百度学术]
LI Long, LI Beixing, YANG Yang. Study on inorganic cementitious material composite modified phosphorus building gypsum[J]. Non‑Metallic Mines, 2022, 45(1):102‑106. (in Chinese) [百度学术]
张雷,郭利杰,魏晓明,等. 矿渣基胶凝材料充填试验及胶结体微观结构演化研究[J]. 有色金属工程, 2023, 13(5):84‑93. [百度学术]
ZHANG Lei, GUO Lijie, WEI Xiaoming, et al. Study on filling test of slag‑based binder and microstructure evolution of backfill[J]. Nonferrous Metals Engineering, 2023, 13(5):84‑93. (in Chinese) [百度学术]
李鑫,杜惠惠,倪文,等. KR脱硫渣碱激发矿渣的配比优化及水化特性[J]. 硅酸盐通报, 2023, 42(1):170‑179. [百度学术]
LI Xin, DU Huihui, NI Wen, et al. Ratio optimization and hydration characteristics of KR desulfurization slag alkali‑activated granulated blast‑furnace slag[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(1):170‑179. (in Chinese) [百度学术]
黎良元,石宗利,艾永平. 石膏-矿渣胶凝材料的碱性激发作用[J]. 硅酸盐学报, 2008, 36(3):405‑410. [百度学术]
LI Liangyuan, SHI Zongli, AI Yongping. Alkaline activation of gypsum‑granulated blast furnace slag cementing materials[J]. Journal of the Chinese Ceramic Society, 2008, 36(3):405‑410. (in Chinese) [百度学术]
CHEN X M, GAO J M, ZHAO Y S. Investigation on the hydration of hemihydrate phosphogypsum after post treatment[J]. Construction and Building Materials, 2019, 229:116864. [百度学术]
李豪,廖宜顺,邓芳,等. 磷建筑石膏对超硫酸盐水泥水化的影响[J]. 硅酸盐通报, 2022, 41(12):4353‑4360. [百度学术]
LI Hao, LIAO Yishun, DENG Fang, et al. Effect of calcined phosphogypsum on hydration of supersulfated cement[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(12):4353‑4360. (in Chinese) [百度学术]
WANG L, YANG H Q, DONG Y, et al. Environmental evaluation, hydration, pore structure, volume deformation and abrasion resistance of low heat Portland(LHP) cement‑based materials[J]. Journal of Cleaner Production, 2018, 203:540‑558. [百度学术]
WANG L, JIN M M, WU Y H, et al. Hydration, shrinkage, pore structure and fractal dimension of silica fume modified low heat Portland cement‑based materials[J]. Construction and Building Materials, 2021, 272:121952. [百度学术]
XIE J, WU Z M, ZHANG X H, et al. Trends and developments in low‑heat Portland cement and concrete:A review[J]. Construction and Building Materials, 2023, 392:131535. [百度学术]
HAHA M B, LOTHENBACH B, LE SAOUT G, et al. Influence of slag chemistry on the hydration of alkali‑activated blast‑furnace slag—Part Ⅱ:Effect of Al2O3[J]. Cement and Concrete Research, 2012, 42(1):74‑83. [百度学术]
WANG Z Y, SHUI Z H, LI Z W, et al. Hydration characterization of M
YANG P, SUO Y L, LIU L, et al. Study on the curing mechanism of cemented backfill materials prepared from sodium sulfate modified coal gasification slag[J]. Journal of Building Engineering, 2022, 62:105318. [百度学术]
林宗寿,黄赟,水中和,等. 过硫磷石膏矿渣水泥与混凝土[M]. 武汉:武汉理工大学出版社, 2015:1‑14. [百度学术]
LIN Zongshou, HUANG Yun, SHUI Zhonghe, et al. Excess‑sulfate phosphogypsum slag cement and concrete[M]. Wuhan:Wuhan University of Technology Press, 2015:1‑14. (in Chinese) [百度学术]
ZHANG B, LI Q B, NIU X J, et al. Influence of a novel hydrophobic agent on freeze‑thaw resistance and microstructure of concrete[J]. Construction and Building Materials, 2021, 269:121294. [百度学术]
喻建伟,张朝阳,孔祥明,等.内掺硅烷乳液憎水剂对混凝土性能的影响[J]. 硅酸盐学报, 2021, 49(2):372‑380. [百度学术]
YU Jianwei, ZHANG Chaoyang, KONG Xiangming, et al. Influence of silane emulsion hydrophobic agent on concrete properties[J]. Journal of the Chinese Ceramic Society, 2021, 49(2):372‑380. (in Chinese) [百度学术]
DENG G, HE Y J, LU L N, et al. The effect of activators on the dissolution characteristics and occurrence state of aluminum of alkali‑activated metakaolin[J]. Construction and Building Materials, 2020, 235:117451. [百度学术]
WANG Z Y, SHUI Z H, SUN T, et al. Recycling utilization of phosphogypsum in eco excess‑sulphate cement:Synergistic effects of metakaolin and slag additives on hydration, strength and microstructure[J]. Journal of Cleaner Production, 2022, 358:131901. [百度学术]
WANG Q, SUN S K, YAO G, et al. Preparation and characterization of an alkali‑activated cementitious material with blast‑furnace slag, soda sludge, and industrial gypsum[J]. Construction and Building Materials, 2022, 340:127735. [百度学术]