摘要
研究了乙二醇、三乙醇胺及聚羧酸减水剂等助磨剂对蔗渣灰(SCBA)颗粒特性的影响,揭示了蔗渣灰颗粒特性对砂浆微观结构的作用机理,分析了蔗渣灰颗粒特性与砂浆强度的相关性,同时基于水胶比、蔗渣灰掺量及颗粒特性与砂浆抗压强度的相关关系,建立了基于颗粒特性调控的蔗渣灰砂浆抗压强度多因素模型.结果表明:掺入0.08%三乙醇胺能最大程度地优化蔗渣灰颗粒特性;当蔗渣灰粒径D≤3 μm的颗粒含量过多时,其比表面积过大,蔗渣灰对砂浆强度造成了负面影响,可增多3 μm<D≤32 μm的颗粒含量以及降低D≤3 μm和D>32 μm的颗粒含量来提升蔗渣灰砂浆的强度.
蔗糖生产过程中使用甘蔗渣作为燃料,其焚烧产生了农业废料蔗渣灰(SCBA),逐年堆积填埋的蔗渣灰会污染土壤和水体,导致环境问题日益严
本文研究了TEA、EG及PC等助磨剂对蔗渣灰颗粒特性的影响,揭示了蔗渣灰颗粒特性对砂浆微观结构的作用机理,分析了蔗渣灰颗粒特性与砂浆强度的相关性,建立了基于颗粒特性调控的蔗渣灰砂浆抗压强度多因素模型,以期为蔗渣灰在建筑材料领域的有效应用提供指导.
蔗渣灰取自广西南宁糖业股份有限公司明阳糖厂,其化学组成(质量分数,文中涉及的掺量、含量、比值等除特殊说明外均为质量分数或质量比)见
SiO2 | Al2O3 | Fe2O3 | CaO | Na2O | MgO | K2O | IL |
---|---|---|---|---|---|---|---|
45.90 | 5.45 | 3.99 | 12.10 | 0.09 | 1.84 | 2.63 | 21.70 |

图1 蔗渣灰的XRD图谱
Fig.1 XRD pattern of SCBA
为有效去除蔗渣灰中未燃尽的植物纤维和碳纤维,在前期研
为保证助磨剂不受减水剂作用的影响,通过增大水胶比以保证蔗渣灰砂浆的流动性,由前期研
Specimen | w/% | Mix proportion/(kg· | |||
---|---|---|---|---|---|
SCBA | Cement | Water | Sand | ||
CS | 0 | 0 | 500 | 260 | 1 500 |
UGAsM | 0 | 75 | 425 | 260 | 1 500 |
EG4M | 0.04 | 75 | 425 | 260 | 1 500 |
EG8M | 0.08 | 75 | 425 | 260 | 1 500 |
EG12M | 0.12 | 75 | 425 | 260 | 1 500 |
TEA4M | 0.04 | 75 | 425 | 260 | 1 500 |
TEA8M | 0.08 | 75 | 425 | 260 | 1 500 |
TEA12M | 0.12 | 75 | 425 | 260 | 1 500 |
PC4M | 0.04 | 75 | 425 | 260 | 1 500 |
PC8M | 0.08 | 75 | 425 | 260 | 1 500 |
PC12M | 0.12 | 75 | 425 | 260 | 1 500 |
根据GB/T 1345—2005《水泥细度检验方法》,采用FSY—150A型水泥细度负压筛析仪测定蔗渣灰的45、80 μm筛余量R45、R80.采用LA—960A型激光粒径分布分析仪和NOVA400E型全自动比表面积分析测试仪分别测定蔗渣灰的粒径D分布和比表面积A.根据GB/T 17671—1999《水泥胶砂强度检测方法》,对尺寸为40 mm×40 mm×160 mm的砂浆试件开展强度试验,测试抗压强度fc和抗折强度ftm.取蔗渣灰砂浆的破碎样品,使用无水乙醇浸泡72 h以终止水化后,置于40 ℃干燥箱中烘干48
助磨剂对蔗渣灰颗粒特性的影响见
Sample | R45/% | R80/% | Proportion(by mass)/% | D50/μm | A/( | |||
---|---|---|---|---|---|---|---|---|
D≤3 μm | 3 μm<D≤32 μm | 32 μm<D≤65 μm | D65 μm | |||||
UGAs | 37.4 | 17.2 | 1.3 | 33.9 | 28.4 | 36.4 | 57.4 | 2.05 |
EG4 | 33.4 | 14.2 | 3.7 | 34.8 | 29.9 | 31.6 | 54.1 | 2.34 |
EG8 | 31.2 | 12.9 | 6.2 | 36.9 | 31.4 | 25.5 | 53.4 | 2.52 |
EG12 | 28.9 | 10.3 | 7.9 | 38.3 | 31.8 | 22.0 | 46.7 | 2.82 |
TEA4 | 29.2 | 13.4 | 5.0 | 39.8 | 32.4 | 22.8 | 43.5 | 3.33 |
TEA8 | 21.2 | 5.3 | 5.8 | 45.9 | 35.1 | 13.2 | 31.8 | 3.67 |
TEA12 | 24.1 | 10.5 | 5.3 | 41.6 | 33.8 | 19.3 | 35.6 | 3.56 |
PC4 | 27.2 | 11.2 | 6.4 | 36.2 | 30.5 | 26.9 | 39.6 | 4.47 |
PC8 | 27.8 | 13.7 | 4.8 | 35.1 | 32.3 | 27.8 | 40.3 | 4.30 |
PC12 | 28.4 | 15.0 | 4.5 | 34.1 | 33.1 | 28.3 | 42.4 | 4.25 |
助磨剂对蔗渣灰砂浆强度的影响见

图2 助磨剂对蔗渣灰砂浆强度的影响
Fig.2 Effect of grinding aids on strength of SCBA mortars
以CS砂浆和UGAsM砂浆作为对照组,选取3种助磨剂中性能提升最佳的EG12M、TEA8M及PC4M砂浆进行孔结构和微观形貌分析,并基于吴中伟
蔗渣灰砂浆的孔结构分析见

图3 蔗渣灰砂浆的孔结构分析
Fig.3 Analysis of pore structure of SCBA mortars
蔗渣灰砂浆的微观形貌见

图4 蔗渣灰砂浆的微观形貌
Fig.4 Micromorphologies of SCBA mortars
蔗渣灰颗粒特性与砂浆强度的相关关系见

图5 蔗渣灰颗粒特性与砂浆强度的相关关系
Fig.5 Correlation between particle characteristics of SCBA and strength of mortars
综合考虑D≤3 μm、3 μm<D≤32 μm及D>32 μm颗粒含量对蔗渣灰砂浆强度的影响,拟合得到蔗渣灰粒径分布与砂浆抗压、抗折强度的相关关系为:
(1) |
(2) |
式中:c1、、c3分别为蔗渣灰D≤3 μm、3 μm<D≤32 μm和D>32 μm颗粒含量.
由式(
已有研究表明蔗渣灰砂浆的抗压强度与水胶比、蔗渣灰掺量存在明显的相关
(3) |
式中:为回归系数;为胶凝材料的抗压强度.
基于颗粒特性调控的蔗渣灰砂浆抗压强度拟合值与试验值见
Specimen | c2/% | fc/MPa | |
---|---|---|---|
Experimental value | Fitting value | ||
UGAsM | 33.9 | 39.48 | 39.57 |
EG4M | 34.8 | 40.70 | 40.51 |
EG8M | 36.9 | 41.37 | 41.46 |
EG12M | 38.3 | 42.22 | 42.24 |
TEA4M | 39.8 | 42.61 | 42.56 |
TEA8M | 45.9 | 45.28 | 45.25 |
TEA12M | 41.6 | 43.63 | 43.69 |
PC4M | 36.2 | 41.03 | 40.97 |
PC8M | 35.1 | 40.71 | 40.79 |
PC12M | 34.1 | 40.49 | 40.48 |
(1)与醇类助磨剂EG、高分子类助磨剂PC相比,醇胺类助磨剂TEA对蔗渣灰颗粒特性的优化效果最好,掺入0.08%的TEA研磨后蔗渣灰细度最小,粒径分布最集中;而掺入0.04%的聚羧酸类助磨剂PC对蔗渣灰比表面积的提升最大.
(2)TEA掺量为0.08%时,蔗渣灰砂浆的抗压和抗折强度提升最大.优化蔗渣灰颗粒特性可改善砂浆的孔结构分布,使有害孔及多害孔占比减少,孔隙率降低最大,并改善砂浆界面过渡区的密实性.
(3)蔗渣灰粒径D≤3 μm颗粒含量过多且比表面积过大会对砂浆强度造成负面影响,可通过增多3 μm<D≤32 μm颗粒含量和降低D≤3 μm、D>32 μm颗粒含量实现砂浆强度提升.
(4)综合考虑蔗渣灰的颗粒细度、粒径分布及比表面积与蔗渣灰砂浆抗压强度的相关关系,建立了基于颗粒特性调控的蔗渣灰砂浆抗压强度多因素模型,可为蔗渣灰颗粒特性的优化调控及配合比设计提供参考.
参考文献
KOLAWOLE J T, BABAFEMI A J, FANIJO E, et al. State‑of‑the‑art review on the use of sugarcane bagasse ash in cementitious materials [J]. Cement and Concrete Composites, 2021, 118:103975. [百度学术]
KATARE V D, MADURWAR M V. Experimental characterization of sugarcane biomass ash—A review [J]. Construction and Building Materials, 2017, 152:1‑15. [百度学术]
CORDEIRO G C, TAVARES L M, TOLEDO R D, et al. Improved pozzolanic activity of sugar cane bagasse ash by selective grinding and classification [J]. Cement and Concrete Research, 2016, 89:269‑275. [百度学术]
杨海静, 孙振平, PLANK Johann, 等. 聚羧酸系减水剂作为助磨剂使用的构效关系研究 [J]. 建筑材料学报, 2022, 25(1):54‑60. [百度学术]
YANG Haijing, SUN Zhenping, PLANK Johann, et al. Study on structure‑activity relationship of polycarboxylic acid water reducing agent as grinding aid [J]. Journal of Building Materials, 2022, 25(1):54‑60. (in Chinese) [百度学术]
ZHAO J H, WANG D M, LIAO S C, et al. Effect of mechanical grinding on physical and chemical characteristics of circulating fluidized bed fly ash from coal gangue power plant [J]. Construction and Building Materials, 2015, 101:851‑860. [百度学术]
董耀武, 孙振平, 周晓阳, 等. 三乙醇胺和三聚磷酸钠助磨剂对水泥颗粒表面性质的影响 [J]. 建筑材料学报, 2022, 25(7):722‑729. [百度学术]
DONG Yaowu, SUN Zhenping, ZHOU Xiaoyang, et al. Effect of triethanolamine and sodium tripolyphosphate as grinding aids on the surface properties of cement particle [J]. Journal of Building Materials, 2022, 25(7):722‑729. (in Chinese) [百度学术]
TORRES S M, DELIMA V E, BASTO P D, et al. Assessing the pozzolanic activity of sugarcane bagasse ash using X‑ray diffraction [J]. Construction and Building Materials, 2020, 264:120684. [百度学术]
LI J, TAO Y, ZHUANG E D, et al. Optimal amorphous oxide ratios and multifactor models for binary geopolymers from metakaolin blended with substantial sugarcane bagasse ash [J]. Journal of Cleaner Production, 2022, 377:134215. [百度学术]
CHEN Z, WEI J L, YI C F, et al. Strength and chloride resistance of mortars blended with SCBA:The effect of calcination and particle sizing on its pozzolanic activity [J]. Journal of Materials Research and Technology, 2023, 22:1423‑1435. [百度学术]
刘超, 胡天峰, 刘化威, 等. 再生复合微粉对混凝土力学性能及微观结构的影响 [J]. 建筑材料学报, 2021, 24(4):726‑735. [百度学术]
LIU Chao, HU Tianfeng, LIU Huawei, et al. Effect of recycled composite powder on mechanical properties and microstructure of concrete [J]. Journal of Building Materials, 2021, 24(4):726‑735. (in Chinese) [百度学术]
MISHRA R K, GEISSBUHLER D, CARMONA H A, et al. En route to multi‑model scheme for clinker comminution with chemical grinding aids [J]. Advances in Applied Ceramics, 2015, 114(7):393‑401. [百度学术]
吴中伟, 廉惠珍. 高性能砂浆 [M]. 北京:中国铁道出版社, 1999. [百度学术]
WU Zhongwei, LIAN Huizhen. High performance concrete [M]. Beijing:China Railway Press, 1999. (in Chinese) [百度学术]
LI Z, GAO X L, LIU Y Y, et al. Hydration kinetics, pore structure, 3D network calcium silicate hydrate, and mechanical behavior of graphene oxide reinforced cement composites [J]. Construction and Building Materials, 2018, 190:150‑163. [百度学术]
MALI A K, NANTHAGOPALAN P. Thermo‑mechanical treatment of sugarcane bagasse ash with very high LOI:A pozzolanic paradigm [J]. Construction and Building Materials, 2021, 288:122988. [百度学术]
BAHURUDEEN A, SANTHANAM M. Influence of different processing methods on the pozzolanic performance of sugarcane bagasse ash [J]. Cement and Concrete Composites, 2015, 56:32‑45. [百度学术]
SUN Y, WANG K Q, LEE H S. Prediction of compressive strength development for blended cement mortar considering fly ash fineness and replacement ratio [J]. Construction and Building Materials, 2021, 271:121532. [百度学术]
BAI S, GUAN X C, LI H, et al. Effect of the specific surface area of nano‑silica particle on the properties of cement paste [J]. Powder Technology, 2021, 392:680‑689. [百度学术]
刘一帆, 吴泽媚, 张轩翰, 等. 超高性能混凝土流变特性及调控研究进展 [J]. 硅酸盐学报, 2023, 51(11):3025‑3038. [百度学术]
LIU Yifan, WU Zemei, ZHANG Xuanhan. Review on rheological properties and their regulation of ultra‑high performance concrete [J]. Journal of the Chinese Ceramic Society, 2023, 51(11):3025‑3038. (in Chinese) [百度学术]
HU S W, CHI M C, HUANG R. Effect of fineness and replacement ratio of ground fly ash on properties of blended cement mortar [J]. Construction and Building Materials, 2018, 176:250‑258. [百度学术]
CUI Y P, WANG L C, LIU J, et al. Impact of particle size of fly ash on the early compressive strength of concrete:Experimental investigation and modelling [J]. Construction and Building Materials, 2022, 323:126444. [百度学术]
韦京利, 李舒阳, 钟福文, 等. 生物质灰混凝土抗压强度的多因素计算模型 [J]. 混凝土, 2021(9):63‑72. [百度学术]
WEI Jingli, LI Shuyang, ZHONG Fuwen, et al. Multi‑factor computation model of compressive strength of biomass‑based concrete [J]. Concrete, 2021(9):63‑72. (in Chinese) [百度学术]
杨绿峰, 周明, 陈正, 等. 基于强度和抗氯盐耐久性指标的混凝土配合比设计及试验研究 [J]. 土木工程学报, 2016, 49(12):65‑74. [百度学术]
YANG Lüfeng, ZHOU Ming, CHEN Zheng, et al. Design and experiment of concrete mix proportion based on indices of strength and durability in chloride environment [J]. China Civil Engineering Journal, 2016, 49(12):65‑74. (in Chinese) [百度学术]