摘要
对比了多种水泥基材料在碳酸水加速侵蚀前后的抗压强度、材料内部的物相迁移和孔结构特征.结果表明:碳酸水侵蚀后水泥基材料强度的发展受到限制,Ca(OH)2和CaCO3含量同时降低,孔径粗化且有害孔的比例增大;以水化硅酸钙凝胶和Ca(OH)2为主要水化产物的胶凝体系最容易受到碳酸水的侵蚀,且Ca(OH)2含量越高,水泥基材料抗碳酸水侵蚀的能力越弱;以钙矾石为主要水化产物的胶凝体系抗碳酸水侵蚀的能力明显增强.
近年来,中国新建铁路、公路中隧道占比逐年攀高,部分隧道工程需要穿越岩溶区.岩溶发育的动力来源于富含CO2和其他酸性物质的运动
目前,有关碳酸水侵蚀的试验仍比较有限,隧道水泥基材料受侵蚀的过程与机理并不明确.隧道工程中常使用以C‑S‑H凝胶与Ca(OH)2贯穿形成结晶网状结构的模筑混凝土,以及在掌子面迅速凝结硬化的喷射混凝土.近年来,湿喷施工中大多采用硫酸铝型无碱速凝
鉴于目前的相关化学侵蚀研究多集中在侵蚀表观、深度和物相的定性演变
水泥选用武安市新峰水泥有限责任公司生产的P∙O 42.5普通硅酸盐水泥和曲阜中联水泥有限公司生产的R∙SAC 42∙5快硬硫铝酸盐水泥,其物理性能见
Cement | Specific surface area/( | Setting time/min | Flexural strength/MPa | Compressive strength/MPa | |||
---|---|---|---|---|---|---|---|
Initial | Final | 3 d | 28 d | 3 d | 28 d | ||
P∙O 42.5 | 360 | 180 | 240 | 6.7 | 9.8 | 27.9 | 48.6 |
R∙SAC 42.5 | 503 | 25 | 110 | 6.8 | ≥10.0 | 30.6 | 42.1 |
Material | CaO | SiO2 | Al2O3 | MgO | Fe2O3 | SO3 | K2O | TiO2 | Other |
---|---|---|---|---|---|---|---|---|---|
P∙O 42.5 | 64.19 | 18.83 | 5.14 | 3.34 | 3.23 | 3.18 | 0.80 | 0.36 | 0.93 |
R∙SAC 42.5 | 49.83 | 10.58 | 20.20 | 2.29 | 2.96 | 12.10 | 0.42 | 1.10 | 0.52 |
Slag powder | 39.73 | 29.34 | 16.27 | 9.74 | 0.69 | 1.91 | 0.33 | 0.86 | 1.13 |
Fly ash | 1.95 | 53.91 | 31.32 | 1.43 | 4.28 | 1.46 | 0 | 0 | 5.65 |
Specimen | Binding material | mW/mB | Admixture |
---|---|---|---|
A1 | P∙O 42.5 | 0.4 | 0 |
A2 | P∙O 42.5 | 0.5 | 0 |
A3 | P∙O 42.5 | 0.5 |
Add liquid alkali‑free accelerator, and the addition mass is 8% of binding material |
B1 | 70%P∙O 42.5+15%slag powder+15%fly ash | 0.4 | 0 |
C1 | R∙SAC 42∙5 | 0.5 | 0 |

图1 碳酸水加速侵蚀试验的原理与仪器
Fig.1 Schematic diagram and instrument for carbonated water accelerated erosion test
试验使用的碳酸水加速试验装置由成都岩心科技有限公司加工组装,使用温度范围为室温至200 ℃,压力范围为0~60 MPa.反应釜内部容量1.2 L,中心转轴转速20 r/min.具体试验步骤如下:(1)将试件放置在中试样架上,向釜内注入去离子水直至没过样品.(2)向真空反应釜中通入99.99%(体积分数)CO2气体直至饱和,保持釜内压力恒定在5 MPa,温度恒定在50 ℃.(3)釜中试样架绕旋转螺杆转动,实现碳酸水与试件间的相对流动;定期检查压力值以及温度,并且每2 d更换1次釜中溶液,以实现碳酸水的动态迁移.
在常温、常压下难以获取高浓度且具有流动性的碳酸水溶液,侵蚀效果不明显.为加速侵蚀进程,设定试验温度为50 ℃,反应釜内压力为5 MPa.C‑S‑H凝胶的脱水开始于105 ℃左右,Ca(OH)2的脱水发生在420 ℃左右,因此试验设定50 ℃对水泥水化产物的分解无影响,且高温可以增大离子的有效扩散系数,加速水化产物的溶解.增大压力可以大幅度提高CO2在水中的溶解度.在该温度与压力条件下,CO2溶解度为17.25 d
一部分净浆试件在标准养护28 d后测试其抗压强度,另一部分净浆试件在标准养护28 d后置于碳酸水反应釜中,侵蚀3、7、28 d后再测试其抗压强度.为消除侵蚀期间水化作用的影响,设置清水浸泡组为对照组,即标准养护28 d后再放入清水中浸泡28 d,且每2 d更换1次浸泡溶液.

图2 净浆试件在碳酸水侵蚀前后的抗压强度
Fig.2 Compressive strength of cement paste specimens before and after carbonated water erosion

图3 净浆试件碳酸水侵蚀28 d与清水浸泡28 d后的抗压强度
Fig.3 Compressive strength of cement paste specimens after 28 d in carbonated water and in clear water
取侵蚀前、碳酸水侵蚀28 d与清水浸泡28 d的试件表层部位,制样,进行Rietveld定量分析.Rietveld法基于非线性最小二乘法,由XRD图谱拟合出计算图
×100% | (1) |
碳酸水侵蚀前后及清水浸泡组净浆的XRD图谱与物相组成如

图4 碳酸水侵蚀前后及清水浸泡组净浆的XRD图谱
Fig.4 XRD patterns of cement paste specimens in carbonated water and in clear water
Phase | A2‑1 | A2‑2 | A2‑3 | B1‑1 | B1‑2 | B1‑3 | A3‑1 | A3‑2 | A3‑3 | C1‑1 | C1‑2 | C1‑3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca(OH)2 | 19.62 | 14.37 | 17.55 | 12.55 | 11.37 | 11.68 | 10.36 | 8.56 | 9.01 | 0 | 0 | 0 |
Calcite | 9.53 | 8.79 | 9.00 | 4.71 | 3.93 | 3.88 | 5.87 | 8.21 | 6.67 | 6.02 | 6.78 | 8.13 |
Gypsum | 4.25 | 4.75 | 3.96 | 3.56 | 3.93 | 3.41 | 5.51 | 5.84 | 5.33 | 0 | 0 | 0 |
Ettringite | 6.16 | 6.22 | 6.35 | 6.01 | 6.88 | 7.56 | 16.96 | 16.11 | 18.03 | 23.58 | 24.80 | 22.11 |
C2S | 4.23 | 3.66 | 2.98 | 4.68 | 2.33 | 2.56 | 2.55 | 1.98 | 1.87 | 4.70 | 3.82 | 5.86 |
C3S | 6.22 | 4.25 | 5.63 | 5.02 | 4.59 | 6.02 | 2.32 | 1.75 | 2.02 | 0 | 0 | 0 |
Amorphous phase | 49.99 | 57.96 | 54.53 | 63.47 | 66.97 | 64.89 | 56.43 | 57.55 | 57.07 | 65.70 | 64.60 | 63.90 |
(1)用普通硅酸盐水泥和复合掺合料制备的A2、B1组净浆,其主要水化产物为Ca(OH)2,衍射峰最强.25°~40°间出现弥散馒头峰,代表存在无定形的水化硅铝酸钙(C‑S(A)‑H)凝胶.同时在9.20°、11.72°和29.50°处存在较微弱的特征峰,表明还存在少量的钙矾石、石膏和方解石型的碳酸钙.经过碳酸水侵蚀和清水浸泡,A2组净浆Ca(OH)2的衍射峰降低.
(2)掺入硫酸铝型速凝剂的A3组净浆中钙矾石的衍射峰相较于A2和B1组净浆显著增强,但由于生成钙矾石的过程中C
(3)C1组净浆中钙矾石的衍射峰较前3组净浆进一步增强,这是由于硫铝酸盐水泥中高水化活性的硫铝酸钙矿物在水化早期生成大量的钙矾石和铝胶.钙矾石迅速结晶,形成坚硬的骨架结构,同时铝胶不断填充空隙,最终使水泥获得较高的早期强
XRD图谱可以直观看出侵蚀前后并无新的侵蚀产物衍射峰出现,结合Rietveld计算可进一步明确物相含量的演变.由
碳酸水侵蚀前后及清水浸泡组净浆的TG‑DTG曲线如

图5 碳酸水侵蚀前后及清水浸泡组净浆的TG‑DTG曲线
Fig.5 TG‑DTG curves of cement pastes in carbonated water and in clear water
从
(1)A2和B1组净浆的失重过程包括30~350 ℃的急速下降段(DTG曲线在60~200 ℃出现重叠峰,C‑S‑H凝胶中游离水与结合水逐渐脱去,钙矾石中与C
(2)纯普通硅酸盐水泥净浆经碳酸水侵蚀与清水浸泡后,Ca(OH)2分解峰的峰值均减小,即Ca(OH)2含量均降低.当水泥浆体与水溶液接触时,可通过扩散以及溶解和沉淀的化学反应进行质量传递,水化产物中Ca(OH)2最先溶蚀浸
(3)复掺粉煤灰和矿粉并降低水胶比时,净浆侵蚀前后的曲线几乎重合,说明碳酸水侵蚀前后物相的含量几乎无变化,B1组净浆的抗碳酸水侵蚀能力强于A2组.
从
从
综上所述,以C‑S‑H和Ca(OH)2为主要水化产物的A2组净浆侵蚀前后物相含量的变化最大,降低水胶比且掺入复合掺合料后,或在以钙矾石为主要水化产物的水泥基材料中,物相含量的变化不明显.因此,选取A2组净浆为代表,进一步分析碳酸水侵蚀过程中易受侵蚀相的含量变化,结果如
Ca(OH)2CaO+H2O | (2) |
CaCO3CaO+CO2↑ | (3) |
(4) |
(5) |
式中:、和、H2O、CaCO3和CO3的相对分子质量;m386、m480、m560、和m700分别为样品在380、480、560、700 ℃的质量,g.

图6 A2组净浆的热重曲线与Ca(OH)2和CaCO3含量
Fig.6 TG curves and mass fractions of Ca(OH)2 and CaCO3 in A2
由

图7 碳酸水侵蚀前后及清水浸泡组净浆总孔隙率
Fig.7 Total porosity of cement paste specimens in carbonated water and in clear water
使用压汞法测定硬化浆体的孔径分布曲线及孔隙特征参数,按照孔径(d)可将浆体内部的孔分为:凝胶孔(d<10 nm)、毛细孔(10 nm<d1 μm)和气孔(d>1 μm).

图8 碳酸水侵蚀前后及清水浸泡组净浆累积孔体积分布曲线
Fig.8 Cumulative pore volume curves of cement paste specimens in carbonated water and in clear water
在A2、A3和B1这3组以普通硅酸盐水泥为主要胶凝材料的净浆中,同龄期下,碳酸水侵蚀后的净浆相较于清水浸泡的净浆孔隙率有所增大.

图9 碳酸水侵蚀前后净浆的微分孔径曲线
Fig.9 Differential pore size curves of cement paste specimens in carbonated water and in clear water
选取侵蚀较明显的A2组净浆,分析不同孔径范围的孔隙变化,结果如

图10 碳酸水侵蚀前后A2组净浆的孔隙结构
Fig.10 Pore structure of A2 cement paste in carbonated water and in clear water
结合孔结构与物相含量的演变可以看出,碳酸水侵蚀是综合了碳化、酸腐蚀和溶蚀的复杂劣化,易发生在密实度低且Ca(OH)2含量多的水泥基材料中.C
(1)水胶比为0.5的普通硅酸盐水泥净浆在碳酸水环境下的强度发展受到限制;降低水胶比并掺入粉煤灰和矿粉后,可以抑制碳酸水对水泥基材料强度的不利影响.
(2)在水泥基材料与碳酸水的反应过程中,Ca(OH)2和CaCO3的含量同时降低,且Ca(OH)2含量越高的水泥基材料侵蚀前后物相的变化越明显.
(3)以普通硅酸盐水泥为主制备的净浆在碳酸水侵蚀后的最可几孔径值增大,钙离子的溶蚀作用抵消了碳化产物对孔隙的填充作用,最终造成孔径粗化和有害孔的比例增大.
(4)碳酸水侵蚀攻击的首要对象是Ca(OH)2,以水化硅酸钙凝胶与Ca(OH)2为主要水化产物的胶凝体系最容易遭受到碳酸水的侵蚀破坏,且Ca(OH)2含量越高的水泥基材料,抗碳酸水侵蚀的能力越弱.以钙矾石为主要水化产物的胶凝体系抗碳酸水侵蚀的能力明显高于前者.
参考文献
宋林华. 喀斯特地貌研究进展与趋势[J]. 地理科学进展, 2000, 19(3):193‑202. [百度学术]
SONG Linhua. Progress and trend of Karst geomorphology study[J]. Progress in Geography, 2000, 19(3):193‑202. (in Chinese) [百度学术]
任美锷, 刘振中. 岩溶学概论[M]. 北京:商务印书馆, 1983. [百度学术]
REN Meie, LIU Zhenzhong. Introduction to Karst science [M]. Beijing:The Commercial Press, 1983. (in Chinese) [百度学术]
王健. 侵蚀性二氧化碳作用下的混凝土耐久性试验研究[D]. 郑州:郑州大学, 2012. [百度学术]
WANG Jian. Experiment research on concrete durability affected by aggressive carbon dioxide in groundwater environment[D]. Zhengzhou:Zhengzhou University, 2012. (in Chinese) [百度学术]
赵卓, 邢锋, 曾力, 等. 地下水中侵蚀性二氧化碳作用下的混凝土耐久性试验[J]. 硅酸盐学报, 2013,41(2):224‑229. [百度学术]
ZHAO Zhuo, XING Feng, ZENG Li, et al. Concrete durability affected by aggressive carbon dioxide in groundwater[J]. Journal of the Chinese Ceramic Society, 2013, 41(2):224‑229. (in Chinese) [百度学术]
刘娟红, 卞立波, 何伟, 等. 煤矿矿井混凝土井壁腐蚀的调查与破坏机理[J]. 煤炭学报, 2015, 40(3):528‑533. [百度学术]
LIU Juanhong, BIAN Libo, HE Wei, et al. Investigation and destruction mechanism on corrosion of concrete shaft in coal mine[J]. Journal of China Coal Society, 2015, 40(3):528‑533. (in Chinese) [百度学术]
郭高峰. 侵蚀性CO2对水泥基材料的腐蚀特性研究[D]. 广州:华南理工大学, 2012. [百度学术]
GUO Gaofeng. Study on corrosion characters of cement‑based materials in aggressive CO2 environment[D]. Guangzhou:South China University of Technology, 2012. (in Chinese) [百度学术]
董芸, 杨华全, 王磊. 碳酸侵蚀条件下水泥基材料性能劣化试验研究[J]. 建筑材料学报, 2014, 17(5):868‑874. [百度学术]
DONG Yun, YANG Huaquan, WANG Lei. Experimental study on property deterioration of cement‑based materials under carbonic acid erosion[J]. Journal of Building Materials, 2014, 17(5):868‑874. (in Chinese) [百度学术]
YIN S H, YANG Y F, ZHANG T S, et al. Effect of carbonic acid water on the degradation of Portland cement paste:Corrosion process and kinetics[J]. Construction and Building Material, 2015, 91:39‑46. [百度学术]
PU Q, JIANG L H, XU J X, et al. Evolution of pH and chemical composition of pore solution in carbonated concrete[J]. Construction and Building Material, 2012, 28(1):519‑524. [百度学术]
GHANTOUS R M, POYET S, L’HOSTIS V, et al. Effect of crack openings on carbonation‑induced corrosion[J]. Cement and Concrete Research, 2017, 95:257‑269. [百度学术]
李晓珍, 柳俊哲, 闫加利, 等. 碳化与氯盐对混凝土孔溶液中钢筋钝化的影响[J]. 建筑材料学报, 2020, 23(1):224‑229. [百度学术]
LI Xiaozheng, LIU Junzhe, YAN Jiali, et al. lnfluence of carbonization and chloride salt on passivation of steel bars in concrete pore solution[J]. Journal of Building Materials, 2020, 23(1):224‑229. (in Chinese) [百度学术]
王家赫, 谢永江, 仲新华, 等. 铁路隧道用高性能液体无碱速凝剂的研制及应用[J]. 铁道建筑, 2021, 61(1):130‑134. [百度学术]
WANG Jiahe, XIE Yongjiang, ZHONG Xinhua, et al. Development and application of high performance liquid alkali‑free accelerator for railway tunnel[J]. Railway Engineering, 2021, 61(1):130‑134. (in Chinese) [百度学术]
张江波. 硫酸铝系无碱液体速凝剂的制备及其作用机理研究[D]. 西安:西安建筑科技大学, 2020. [百度学术]
ZAHNG Jiangbo. The mechanism of aluminium sulfate‑based alkali‑free liquid accelerator on the hydration of cement pastes[D]. Xi’an:Xi’an University of Architecture and Technology, 2020. (in Chinese) [百度学术]
高玉军, 邓翀, 秦明强, 等. 铁路隧道C30早高强喷射混凝土试验研究与应用[J]. 建筑材料学报, 2023, 26(9):1011‑1022. [百度学术]
GAO Yunjun, DENG Chong, QIN Mingqiang, et al. Experimental research and application of C30 early and high‑strength shotcrete in railway tunnel[J]. Journal of Building Materials, 2023, 26(9):1011‑1022. (in Chinese) [百度学术]
金惠玲, 孙振平, 杨海静, 等. 两种酸溶液对水泥浆体的腐蚀及机理[J]. 建筑材料学报, 2024, 27(1):60‑68. [百度学术]
JIN Huiling, SUN Zhenping, YANG Haijing, et al. Corrosion and mechanisms of sulfurit acid and citril acid solution on cement hardened paste[J]. Journal of Building Materials, 2024, 27(1):60‑68. (in Chinese) [百度学术]
史才军, 元强. 水泥基材料测试分析方法[M]. 北京:中国建筑工业出版社, 2018. [百度学术]
SHI Caijun, YUAN Qiang. Test and analysis method of cement‑based materials[M]. Beijing:China Building and Construction Press, 2018. (in Chinese) [百度学术]
王培铭, 赵丕琪, 刘贤萍. 基于Rietveld精修法的水泥熟料物相定量分析[J]. 建筑材料学报, 2015, 18(4):692‑698. [百度学术]
WANG Peiming, ZHAO Piqi, LIU Xianping. Quantitative analysis of cement clinker by Rietveld refinement method[J]. Journal of Building Materials, 2015, 18(4):692‑698. (in Chinese) [百度学术]
钱觉时, 余金城, 孙化强, 等. 钙矾石的形成与作用[J]. 硅酸盐学报, 2017, 45(11):1569‑1581. [百度学术]
QIAN Jueshi, YU Jincheng, SUN Huaqiang, et al. Formation and function of ettringite in cement hydrates[J]. Journal of the Chinese Ceramic Society, 2017, 45(11):1569‑1581. (in Chinese) [百度学术]
YAN Z X, ZHANG H B, ZHU Y. Hydration kinetics of sulfoaluminate cement with different water/cement ratios as grouting material used for coal mines[J]. Magazine of Concrete Research, 2022, 74(20):1056‑1064. [百度学术]
WINNEFELD F, LOTHENBACH B. Hydration of calcium sulfoaluminate cements—Experimental findings and thermodynamic modelling[J]. Cement and Concrete Research, 2010, 40(8):1239‑1247. [百度学术]
王燕谋, 苏慕珍, 张量. 硫铝酸盐水泥[M]. 第一版. 北京:北京工业大学出版社, 1999. [百度学术]
WANG Yanmou, SU Muzhen, ZHANG Liang. Sulfoaluminate cement[M]. 1st ed. Beijing:Beijing University of Technology Press, 1999. (in Chinese) [百度学术]
SHAH V, SCRIVENER K, BHATTACHARJEE B, et al. Changes in in microstructure characteristics of cement paste on carbonation[J]. Cement and Concrete Research, 2018, 109:184‑197. [百度学术]
王善拔. 钙矾石热稳定性的研究[J]. 硅酸盐通报, 1987(2):19‑24. [百度学术]
WANG Shanba. Study on thermal stability of ettringite[J]. Bulletin of the Chinese Ceramic Society, 1987(2):19‑24. (in Chinese) [百度学术]
SCRIVENER K, SNELLINGS R, LOTHENBACH B. Practical guide to microstructural analysis of cementitious materials[M]. Boca Raton:CRC Press, 2016. [百度学术]
ALONSO C, CASTELLOTE M, LLORENTE I, et al. Ground water leaching resistance of high and ultra high performance concretes in relation to the testing convection regime[J]. Cement and Concrete Research, 2006, 36(9):1583‑1594. [百度学术]
ZHANG Z Q, ZHANG B, YAN P Y. Hydration and microstructures of concrete containing raw or densified silica fume at different curing temperatures[J]. Construction and Building Material, 2016, 121:483‑490. [百度学术]
MEHTA P K, MONTEIRO P J M. Concrete:Microstructure, properties, and materials[M]. New York:McGraw‑Hill, 2006. [百度学术]