摘要
采用氢氧化铝、有机蒙脱土与可膨胀石墨复配阻燃抑烟剂,通过极限氧指数(LOI)法、烘箱恒温加热试验、热重分析、傅里叶变换红外光谱、扫描电镜及X射线能谱分析了复合阻燃抑烟剂对沥青的作用效果与协同机理. 结果表明:复配剂的加入起到明显的阻燃抑烟效果,含量为6%的复配剂可将沥青的LOI值提升至25.19%,单位沥青烟气释放量减少70%;复配剂拓宽了单一助燃剂的作用温度范围,在沥青燃烧过程中吸收热量,稀释可燃气体浓度,不仅能够提升沥青的热稳定性,还可形成复合阻隔层,起到协同阻燃抑烟作用.
传统热拌沥青混合料在生产施工过程会释放大量烟气,造成能源耗费和环境污染.在隧道等封闭路段内,交通事故诱发火灾时易造成沥青路面热分解和燃烧.随着“双碳计划”落地的实施和人们对健康安全理念的重视,降低沥青路面施工过程中的烟气排放,提升突发火灾时沥青的阻燃抑烟性能,已成为当前研究热点.
目前,应用较多的沥青阻燃材料主要有氢氧化铝(ATH)、可膨胀石墨(EG)、有机蒙脱土(OMMT)、聚磷酸铵和光催化材料
鉴于此,本研究以ATH、OMMT和EG为原材料,复配无机-有机三系复合阻燃抑烟剂,同时在沥青中加入温拌剂Sasobi
沥青选用SBS改性沥青,25 ℃针入度为5.5 mm,5 ℃延度为31 cm,软化点为68 ℃.温拌剂采用Sasobit. 复合阻燃抑烟剂中ATH平均粒径为5.1 μm,Na2O含量(质量分数,下同)为0.200%,SiO2含量为0.015%,分解温度范围为210~900 ℃;EG密度为1.2 g/c
(1)依据文献[
(2)将SBS改性沥青加热到165 ℃后投入2% Sasobit,并使用高速剪切仪以1 000 r/min的转速剪切15 min;再次加热到150 ℃,分别加入沥青质量0%、4%、6%、8%和10%的AOE,匀速搅拌10 min;之后先以4 500 r/min的转速剪切45 min,再以1 000 r/min的转速继续剪切10 min,即制备得到试验用温拌阻燃抑烟沥青试样,分别编号为AOE‑0、AOE‑4、AOE‑6、AOE‑8和AOE‑10.
将150.0 mm×150.0 mm的玻璃纤维表面毡,置于内腔尺寸为151.0 mm×151.0 mm×3.0 mm的金属模具框内,把加热后的阻燃抑烟沥青浇洒于玻璃纤维毡上并浸透,待其冷却后脱模,裁剪成尺寸为6.5 mm×151.0 mm×3.0 mm的长条试样.按照NB/SH/T 0815—2010《沥青燃烧性能测定 氧指数法》对沥青的LOI值进行测试.
鉴于国内外对于沥青烟气的排放与检测尚无标准,本研究自主设计了烘箱恒温加热法.取5种阻燃抑烟沥青试样各50 g置于称重后的铁质空容器中,一起放入烘箱,烘箱温度设置为220 ℃,加热6 h,每间隔1 h称重并记录试样的质量数据,以分析其质量变化情况.
使用NETZSCH STA 449 F3型热重分析仪,设定气体流量为35 mL/min、初始温度为20 ℃,并以10 K/min的速率升温至800 ℃,对沥青试样开展热重分析.

图1 各AOE掺量下阻燃抑烟沥青的LOI值
Fig.1 LOI values of flame retardant and smoke suppression asphalts at different AOE contents

图2 各AOE掺量下阻燃抑烟沥青的质量损失
Fig.2 Mass loss of flame retardant and smoke suppression asphalts at different AOE contents
采用沥青试样的初始质量与加热6 h后的质量损失来计算单位阻燃抑烟沥青的烟气释放量,并进行非线性拟合得到二者的指数回归方程,结果如

图3 单位阻燃抑烟沥青的烟气释放量
Fig.3 Smoke emission of unit flame retardant and smoke suppression asphalts
结合烘箱恒温加热和LOI的试验结果,同时考虑经济性,本研究将AOE的最佳掺量范围确定为4%~8%.后续试验以试样AOE‑0为对照组,对试样AOE‑4、AOE‑6和AOE‑8展开进一步研究.

图4 阻燃抑烟沥青的TG曲线
Fig.4 TG curves of flame retardant and smoke suppression asphalts
由
隧道等封闭环境发生火灾时温度一般最高为1 000

图5 阻燃抑烟沥青的FTIR图谱
Fig.5 FTIR spectra of flame retardant and smoke suppression asphalts

图6 阻燃抑烟沥青的SEM照片
Fig.6 SEM images of flame retardant and smoke suppression asphalts
综合考虑后,推荐AOE的最佳掺量为6%.取试样AOE‑0和AOE‑6燃烧后的残炭进行SEM观察,照片如

图7 AOE‑0和AOE‑6残炭的SEM照片
Fig.7 SEM images of char residues of AOE‑0 and AOE‑6
选取

图8 AOE‑0和AOE‑6残炭微面的EDS图谱
Fig.8 EDS spectra of char residues microface of AOE‑0 and AOE‑6
由
结合试验结果绘制AOE的协同阻燃抑烟机理示意图,如

图9 AOE的协同阻燃抑烟机理示意图
Fig.9 Schematic diagram of synergistic mechanism Flame retardant smoke suppression of AOE
由
由
由
(1)采用氢氧化铝(ATH)、有机蒙脱土(OMMT)和可膨胀石墨(EG)复配的无机-有机三系阻燃抑烟剂(AOE)能够提升沥青的阻燃抑烟性能.考虑经济性,推荐AOE掺量为6%,由此制备得到阻燃抑烟沥青AOE‑6,其极限氧指数(LOI)值增至25.19%,能够抑制70%的单位沥青烟气释放量;且AOE的作用温度范围能够覆盖沥青燃烧分解的全过程,充分发挥阻燃抑烟作用.
(2)AOE能够提升沥青结构的稳定性,使沥青表面呈现均匀褶皱形态;沥青燃烧后,AOE分解残留物,形成致密片状物,裹覆在残炭表面,使残炭表面O元素的质量分数增加28.66%,C元素的质量分数减少6.75%.
(3)ATH、OMMT和EG在不同的作用温度区间反应分解,相互配合,实现了气相稀释、固相凝聚和物理吸附等多种效应.一方面弥补了单种材料温度区间较小的缺点;另一方面反应生成物相互配合,形成三系复合阻隔层,弥补了单层阻隔层薄弱易剥落的缺点,阻断了烟气释放与燃烧的进一步发展.
参考文献
鲍金奇, 王浩轩, 丛玉凤, 等. 道路沥青抑烟剂的研究进展[J]. 当代化工, 2020, 49(5):988‑992. [百度学术]
BAO Jinqi, WANG Haoxuan, CONG Yufeng, et al. Research progress on road asphalt smoke suppressants [J]. Contemporary Chemical, 2020, 49(5):988‑992. (in Chinese) [百度学术]
张通, 闫治国, 杨正龙, 等. 阻燃聚合物改性水泥基复合板材的防火性能[J]. 建筑材料学报, 2021, 24(2):333‑338. [百度学术]
ZHANG Tong, YAN Zhiguo, YANG Zhenglong, et al. Fire resistance of flame retardant polymer modified cement‑based composite plate [J]. Journal of Building Materials, 2021, 24(2):333‑338. (in Chinese) [百度学术]
黄志义, 武斌, 康诚, 等. 复合氢氧化物改性沥青阻燃和路用性能[J]. 浙江大学学报(工学版), 2016, 50(1):27‑32. [百度学术]
HUANG Zhiyi, WU Bin, KANG Cheng, et al. Flame retardant and road performance of composite hydroxide modified asphalt [J]. Journal of Zhejiang University (Engineering Science), 2016, 50(1):27‑32. (in Chinese) [百度学术]
孙吉书, 李文霞, 李宁利, 等. 可膨胀石墨/氢氧化铝复合抑烟沥青制备及机理分析[J]. 大连理工大学学报, 2022, 62(4):386‑393. [百度学术]
SUN Jishu, LI Wenxia, LI Ningli, et al. Preparation and mechanism analysis of expandable graphite / aluminum hydroxide composite smoke suppression asphalt [J]. Journal of Dalian University of Technology, 2022, 62(4):386‑393. (in Chinese) [百度学术]
YANG X L, SHEN A Q, SUN Y X,et al. Effects of alumina trihydrate (ATH) and organic montmorillonite (OMMT) on asphalt fume emission and flame retardancy properties of SBS‑modified asphalt [J]. Construction and Building Materials, 2020, 236:117576. [百度学术]
朱凯, 唐大全, 黄亚东, 等. ZnMgAl‑CO3‑LDHs的沥青阻燃抑烟性能与机理分析[J]. 建筑材料学报, 2019, 22(4):599‑605. [百度学术]
ZHU Kai, TANG Daquan, HUANG Yadong, et al. Analysis of flame retardant and smoke suppression properties and mechanism of ZnMgAl‑CO3‑LDHs asphalt[J].Journal of Building Materials, 2019, 22(4):599‑605. (in Chinese) [百度学术]
路建强, 杜傲伟, 柳伟, 等. 两种沥青路面阻燃剂的阻燃效果研究[J]. 有色金属材料与工程, 2023, 44(1):75‑84. [百度学术]
LU Jianqiang, DU Aowei, LIU Wei, et al. Study on the flame retardant effect of two kinds of asphalt pavement flame retardants [J]. Nonferrous Metal Materials and Engineering, 2023, 44(1):75‑84. (in Chinese) [百度学术]
陈辉强, 郑智能, 郭鹏, 等. 硼酸锌对隧道阻燃沥青的阻燃增效作用及机理[J]. 建筑材料学报, 2017, 20(4):635‑639,645. [百度学术]
CHEN Huiqiang, ZHENG Zhineng, GUO Peng, et al. The flame retardant synergistic effect and mechanism of zinc borate on tunnel flame retardant asphalt [ J ].Journal of Building Materials, 2017, 20(4):635‑639,645. (in Chinese) [百度学术]
杨小龙, 申爱琴, 蒋宜馨, 等. 基于阻燃抑烟的纳米黏土改性沥青综述[J]. 交通运输工程学报, 2021, 21(5):42‑61. [百度学术]
YANG Xiaolong, SHEN Aiqin, JIANG Yixin, et al. Review of nano‑clay modified asphalt based on flame retardant and smoke suppression [J].Transportation Engineering Journal, 2021, 21(5):42‑61. (in Chinese) [百度学术]
XIA W J, ZHOU X Y, YANG X Y. Suppressive effects of composite flame retardant on smoke release, combustion soot and residue constituents of asphalt mixture [J]. Journal of the Energy Institute, 2022, 103:60‑71. [百度学术]
徐加秋, 阳恩慧, 罗浩原, 等. 基于温度应力的温拌沥青胶结料低温力学性能[J]. 建筑材料学报, 2020, 23(1):70‑76. [百度学术]
XU Jiaqiu, YANG Enhui, LUO Haoyuan, et al. Low temperature mechanical properties of warm mix asphalt binder based on temperature stress [J]. Journal of Building Materials, 2020, 23(1):70‑76. (in Chinese) [百度学术]
林钰, 刘圣洁, 黄慧, 等.基于流变特性的温拌阻燃沥青的高、低温性能[J].江苏大学学报(自然科学版),2023,44(4):483‑489. [百度学术]
LIN Yu, LIU Shengjie, HUANG Hui, et al. High and low temperature properties of warm mix flame retardant asphalt based on rheological properties [J]. Journal of Jiangsu University (Natural Science), 2023,44 (4) :483‑489. (in Chinese) [百度学术]
TAO X, WANG Y, XIA W J, et al. Effects of flame retardants on thermal decomposition of SARA fractions separated from asphalt binder[J]. Construction and Building Materials, 2018, 173:209‑219 [百度学术]
LI N, JIANG Q, WANG F S, et al. Emission behavior, environmental impact and priority‑controlled pollutants assessment of volatile organic compounds (VOCs) during asphalt pavement construction based on laboratory experiment[J]. Journal of Hazardous Materials, 2020, 398:122904. [百度学术]
FEDERICO A, FEDERICA B, FELICE G. Airborne emissions of asphalt/wax blends for warm mix asphalt production [J]. Journal of Cleaner Production, 2017, 164:749‑756. [百度学术]
刘莹. 沥青烟气定量评价方法发展现状[J]. 化工管理, 2019(31):137‑138. [百度学术]
LIU Ying. Development status of quantitative evaluation methods for asphalt flue gas [J]. Chemical Management, 2019 (31):137‑138. (in Chinese) [百度学术]
余嫚. 沥青挥发性有机化合物(VOC)的释放及其对沥青性能的影响[D]. 武汉:武汉理工大学, 2012. [百度学术]
YU Man. The release of volatile organic compounds (VOC) from asphalt and its effect on asphalt performance [D]. Wuhan:Wuhan University of Technology, 2012. (in Chinese) [百度学术]
夏文静. 隧道火灾下沥青路面燃烧行为及复合阻燃剂协同抑制机理[D]. 南京:南京林业大学, 2020. [百度学术]
XIA Wenjing. Combustion behavior of asphalt pavement under tunnel fire and synergistic inhibition mechanism of composite flame retardants [D]. Nanjing:Nanjing Forestry University, 2020. (in Chinese) [百度学术]
杜永潇,孙晓立,杨军,等.盾构隧道火灾损伤技术状况检测与鉴定研究[J]. 现代隧道技术, 2023, 60(2):260‑270. [百度学术]
DU Yongxiao, SUN Xiaoli, YANG Jun, et al. Fire damage detection and identification of shield tunnel [J]. Modern Tunnel Technology, 2023, 60(2):260‑270. (in Chinese) [百度学术]
崔亚楠, 崔树宇, 郭立典. 废机油再生SBS改性沥青的性能及机理[J]. 建筑材料学报, 2022, 25(2):164‑170. [百度学术]
CUI Yanan, CUI Shuyu, GUO Lidian. Performance and mechanism of SBS modified asphalt regenerated by waste engine oil [J]. Journal of Building Materials, 2022, 25(2):164‑170. (in Chinese) [百度学术]
黄刚, 何兆益, 周超, 等. 膨胀石墨抑制沥青烟机理与抑烟沥青混合料动态性能[J]. 中国公路学报, 2015, 28(10):1‑10. [百度学术]
HUANG Gang, HE Zhaoyi, ZHOU Chao, et al. The mechanism of expanded graphite inhibiting asphalt smoke and the dynamic performance of smoke suppression asphalt mixture [J]. China Journal of Highways, 2015, 28(10):1‑10. (in Chinese) [百度学术]