摘要
基于中国某水泥厂2022~2023年生产数据及近3年国家/行业统计数据进行生命周期评价,核算水泥窑协同处置城市生活垃圾(MSW)生产不同品种水泥的环境负荷;联合数据质量指标评估和蒙特卡洛模拟来综合评估最终结果的不确定度.与常规工艺相比,水泥窑协同处置工艺生产每吨熟料的综合环境负荷降幅为7.82%;4种水泥中,P·O 52.5水泥的综合环境负荷最大,但其单位强度的环境负荷相对较小.综合考虑,采用水泥窑协同处置工艺生产P·C 42.5水泥与采用常规工艺生产P·O 42.5水泥相比,其综合环境负荷降幅为16.87%.
水泥窑协同处置技术将高温处置固体废弃物与水泥熟料煅烧相结合,以固废作为替代性原料和燃料,不仅节约水泥生产资源及能源消耗,还可实现固废无害化处置,这对推动固废资源化以及水泥行业可持续发展具有重要意义和环保价值.
近年来,中国城市生活垃圾(MSW)的产生量急剧增加, 2021年其清运量达2.49亿
生命周期评价(LCA)目前已广泛应用于水泥生
基于此,本研究以国内某水泥厂2022~2023年生产数据及近3年国家/行业统计数据为基础进行生命周期评价.首先,选取1 t熟料为单位,核算水泥窑协同处置MSW的环境负荷降幅;选取1 t水泥为单位,结合力学性能,对比不同水泥品种及其单位强度下的环境负荷;最后,将数据质量指标评估和蒙特卡洛模拟相结合,对LCA结果进行不确定度评估,以期为MSW无害化处置及水泥行业降碳减污提供理论依据.
采用生命周期评价方
以国内某典型水泥窑协同处置MSW生产厂为例,该厂拥有一条日产4 500 t水泥熟料的新型干法生产线,城市生活垃圾无害化日处理量可达500 t.分别选取1 t 熟料和1 t不同品种的水泥作为研究的单位,系统边界涉及原料开采(Ⅰ)及运输(Ⅱ)、生料制备(Ⅲ)、煤粉制备(Ⅳ)、熟料煅烧(Ⅴ)、水泥制备(Ⅵ)(包括水泥粉磨及包装)以及相关能源生产(煤炭开采及电力生产等)和余热回收发电过程,如

图1 水泥窑协同处置城市生活垃圾的系统边界
Fig.1 System boundaries of municipal solid waste co‑processing in cement kiln
通过对水泥厂生产过程进行实地数据采集,缺失数据参考国家/行业统计数据及相关文献资
水泥生产过程中消耗的石灰石、低硅黏土等原料及煤炭、电力等能源数据均取自该水泥厂2022~2023年生产数据.MSW作为水泥窑协同处置废弃物,先经脱水预处理,预处理后含水率(质量分数)约40%,再与水泥生料一起投入回转窑内,作为生产熟料的替代性燃料和替代性原料.根据GB 50869—2013《生活垃圾卫生填埋处理技术规范》估算,水泥窑协同处置1 t MSW可节约填埋占地约0.167
除协同处置MSW(热值替代率15.67%),熟料煅烧阶段还使用少量废旧橡胶、市售固体燃料作为替代性燃料,燃料热值替代率达20.05%,以1 t熟料为单位,共节约标煤26.07 kg.此外,该水泥厂配有纯低温余热发电系统,单位熟料余热发电量约37.9 kW·h.
结合GB 4915—2013《水泥工业大气污染物排放标准》,重点分析水泥生产过程中CO2、SO2、NOx、PM、Hg、氟化物和氨等污染物排放.其中,CO2排放数据依据GB/T 32151.8—2015《温室气体排放核算与报告要求 第8部分:水泥生产企业》进行核算,过程涉及的参数取值见
Accounting scope | Parameter value | ||
---|---|---|---|
Fuel combustion emission |
Net calorific value/(GJ· | Coal |
21.742 |
Diesel |
42.652 | ||
Carbon amount/(t·G | Coal |
26.1×1 | |
Diesel |
20.2×1 | ||
Carbon oxidation rate/% | Coal |
98 | |
Diesel |
99 | ||
Process emission | CaO content(by mass) in clinker/% |
65.558 | |
CaO content(by mass) that is not generated from carbonate decomposition in clinker/% |
0.745 | ||
MgO content(by mass) in clinker/% |
0.630 | ||
MgO content(by mass) that is not generated from carbonate decomposition in clinker/% |
0.253 | ||
Emission from purchased electricity |
Emission factor/(t·M |
0.570 3 |
Note: a The data is the measured data of the cement plant;
水泥所用石灰石原料来自该水泥厂自有石灰石矿山,以1 t为单位,开采各工序能耗见
Inventory item | Perforating | Blasting | Scooping | Crushing | Belt transportation | Other |
---|---|---|---|---|---|---|
Explosive consumption/kg |
1.87×1 | |||||
Diesel consumption/kg |
3.90×1 |
2.46×1 |
2.16×1 | |||
Electricity/(kW·h) |
2.51×1 |
8.25×1 |
1.25×1 |
水泥生产消耗的能源主要为煤炭和电力,煤炭开采清单参考《中国环境统计年鉴2021》、《中国统计年鉴2022》及《2020煤炭行业发展年度报告》;电力生产清单参考《中国电力行业年度发展报告2022》,缺失数据引自相关电力生产生命周期清
石灰石在矿山破碎后采用皮带输送机运输至水泥厂,运输距离为3.5 km;煤炭采用铁路运输,根据百度地图运输距离约为2 330 km;其他原料均通过公路运输,运输距离采用2021年全国公路运输的平均运输距离177 k
该水泥厂生产的水泥主要包括P·O 52.5水泥、P·O 42.5水泥、P·C 42.5水泥及M 32.5水泥4种,相应水泥熟料系数(水泥熟料占水泥的质量比)分别为0.859、0.775、0.688和0.517,不同品种水泥3、28 d的抗压、抗折强度见
Cement | Mass ratio of clinker‑to‑cement | Compressive strength/MPa | Flexural strength/MPa | ||
---|---|---|---|---|---|
3 d | 28 d | 3 d | 28 d | ||
P·O 52.5 | 0.859 | 35.8 | 64.4 | 6.6 | 8.9 |
P·O 42.5 | 0.775 | 28.4 | 55.2 | 5.6 | 8.6 |
P·C 42.5 | 0.688 | 23.9 | 52.2 | 4.8 | 8.8 |
M 32.5 | 0.517 | 16.3 | 42.1 | 3.5 | 8.0 |
将上述输入、输出数据汇总得到生产单位水泥的生命周期清单,如
Inventory item | Raw material extraction | Transportation | Raw material preparation | Coal preparation | Clinker calcination | Cement production | ||||
---|---|---|---|---|---|---|---|---|---|---|
P·O 52.5 | P·O 42.5 | P·C 42.5 | M 32.5 | |||||||
Resource consumption |
m(limestone)/ kg |
1.23×1 |
3.19×1 |
6.48×1 |
6.82×1 |
1.40×1 | ||||
m(clay)/kg |
1.64×1 | |||||||||
m(red mud)/ kg |
5.36×1 | |||||||||
m(fly ash)/kg |
8.12×1 |
6.79×1 |
9.46×1 | |||||||
m(ferroalloy slag)/kg |
1.31×1 |
3.50×1 |
3.10×1 | |||||||
m(dust recycled from bypass system)/kg |
1.90×1 |
2.45×1 |
2.49×1 | |||||||
m(coal‑fired slag)/kg |
6.80×1 |
1.05×1 |
1.30×1 |
1.98×1 | ||||||
m(desulfurization gypsum)/kg |
4.11×1 |
4.02×1 |
4.31×1 |
4.76×1 | ||||||
Land use/ |
-8.10×1 | |||||||||
Energy consumption |
m(explosive)/ kg |
2.30×1 | ||||||||
m(coal)/kg |
5.76×1 |
1.77×1 |
1.33×1 | |||||||
m(waste rubber)/kg |
3.75×1 | |||||||||
m(marketed solid fuel)/kg |
3.76×1 | |||||||||
m(diesel)/kg |
3.77×1 |
1.83×1 |
1.37×1 | |||||||
Electricity/ (kW·h) |
1.02×1 |
1.54×1 |
1.89×1 |
3.73×1 |
2.11×1 |
3.24×1 |
2.65×1 |
2.07×1 |
2.59×1 | |
Co‑processing waste |
m(municipal solid waste)/kg |
4.85×1 | ||||||||
Pollutant emission | m(CO2)/kg |
1.29×1 |
1.01×1 |
1.08×1 |
2.13×1 |
8.05×1 |
1.88×1 |
1.54×1 |
1.20×1 |
1.50×1 |
m(SO2)/kg |
7.83×1 |
6.04×1 |
1.91×1 |
3.77×1 |
1.31×1 |
3.27×1 |
2.68×1 |
2.09×1 |
2.62×1 | |
m(NOx)/kg |
9.58×1 |
6.06×1 |
2.87×1 |
5.67×1 |
4.39×1 |
4.92×1 |
4.03×1 |
3.15×1 |
3.94×1 | |
m(PM)/kg |
2.45×1 |
3.50×1 |
5.05×1 |
1.56×1 |
2.66×1 |
3.40×1 |
3.27×1 |
3.15×1 |
3.26×1 | |
m(Hg)/kg |
2.40×1 |
3.62×1 |
4.44×1 |
8.77×1 |
6.73×1 |
7.61×1 |
6.23×1 |
4.86×1 |
6.09×1 | |
m(fluoride)/kg |
1.88×1 |
2.83×1 |
3.48×1 |
6.86×1 |
2.51×1 |
5.96×1 |
4.88×1 |
3.81×1 |
4.77×1 | |
m(ammonia)/kg |
1.90×1 |
2.86×1 |
3.52×1 |
6.94×1 |
2.70×1 |
6.03×1 |
4.93×1 |
3.85×1 |
4.82×1 |
生命周期影响评价可分为影响分类、特征化和归一化3个部分.根据CML2001评价模型,考虑水泥窑协同处置MSW特性,选取不可再生资源消耗(ADP)、温室效应(GWP)、人体健康损害(HTP)、环境酸化(AP)、光化学烟雾(POCP)、富营养化(EP)和土地占用(LU)7种环境影响类型进行评价.其中,ADP与LU的特征化因子均取自基于中国资源特点的本土化修正模
以综合环境负荷(integrated environmental load indicator,IIEL)作为LCA最终评价指标,即采用世界范围内的归一化基准
(1) |
式中:Ei、Ei,0分别表示某一环境影响类型的环境负荷当量值(特征化结果)和归一化基准值;ωi为权重系数.
水泥生产涉及的环境影响类型、归一化基准值及权重系数见
Environmental impact category | Inventory item | Equivalent unit | Ei,0 | wi |
---|---|---|---|---|
ADP | Limestone, clay, coal, diesel | kg Sb eq. |
2.14×1 | 0.300 5 |
GWP | CO2 | kg CO2 eq. |
4.18×1 | 0.266 3 |
HTP | SO2, NOx, PM, Hg, fluoride, ammonia | kg 1,4‑dichlorobenzene eq. |
2.58×1 | 0.250 2 |
AP | SO2, NOx, fluoride, ammonia | kg SO2 eq. |
2.39×1 | 0.070 4 |
POCP | SO2, NOx | kg ethylene eq. |
3.68×1 | 0.056 5 |
EP | NOx, ammonia | kg PO eq. |
1.58×1 | 0.032 6 |
LU | Area | Net primary productivity |
1.16×1 | 0.023 5 |
生命周期解释以清单分析及影响评价的结果为基础,进行总体分析,将数据质量评估与蒙特卡洛模拟相结合,以评估水泥LCA结果的不确定度.其分析流程如

图2 不确定度分析流程
Fig.2 Process framework of the uncertainty analysis
经上述生命周期评价过程及核算,水泥窑协同处置MSW工艺生产单位熟料的综合环境负荷为5.67×1

图3 熟料各生产阶段对环境影响类型的贡献
Fig.3 Contribution of the clinker production stages on environmental impact categories
由
计算常规工艺生产熟

图4 常规工艺与协同处置工艺生产熟料环境负荷的对比
Fig.4 Comparison of environmental load of clinker by conventional and co‑processing production,
由
该厂利用水泥窑协同处置MSW生产的熟料,进一步用于生产P·O 52.5、P·O 42.5、P·C 42.5和M 32.5水泥,4种水泥各生产阶段、各环境影响类型下的环境负荷及综合环境负荷见

图5 不同品种水泥的环境负荷
Fig.5 Environmental load of different cements
观察4种水泥各生产阶段环境负荷的变化,由
从
综合考虑水泥窑协同处置MSW生产熟料和水泥熟料系数降低带来的环境效益,采用水泥窑协同处置工艺生产熟料系数为0.517的M 32.5水泥与采用常规工艺生产的熟料系数为0.859的P·O 52.5水泥相比,其综合环境负荷降幅达42.11%.基于相同强度等级进行比较,采用常规工艺生产的熟料系数为0.775的P·O 42.5水泥与采用水泥窑协同处置工艺生产的熟料系数为0.688的P·C 42.5水泥相比,其综合环境负荷降幅为16.87%.
将环境负荷与水泥力学性能进行耦合评价,采用单位强度的环境负荷来综合评价不同品种水泥生产的环境影响,如

图6 不同品种水泥单位强度的环境负荷
Fig.6 Environmental load per unit strength of different cements
由
以P·O 52.5水泥为例进行数据质量评估,其他品种水泥同理.将蒙特卡洛模拟随机抽样次数从1 000次逐渐增加到30 000次,观察模拟结果标准差的变化(

图7 30 000次蒙特卡洛模拟结果标准差的变化
Fig.7 Changes in standard deviation of results over 30 000 Monte Carlo simulations
由
经25 000次蒙特卡洛模拟,各生产阶段环境负荷及综合环境负荷模拟结果的不确定度(均值、标准差、95%置信区间及相对标准差)见
Production stage | Mean value | Standard deviation | 95% confidence interval | Relative standard deviation |
---|---|---|---|---|
Raw material extraction |
7.35×1 |
4.67×1 |
[6.07×1 | 0.063 6 |
Transportation |
1.25×1 |
7.02×1 |
[1.02×1 | 0.056 0 |
Raw material preparation |
6.25×1 |
3.05×1 |
[5.38×1 | 0.048 8 |
Coal preparation |
1.23×1 |
5.96×1 |
[1.07×1 | 0.048 4 |
Clinker calcination |
4.62×1 |
1.30×1 |
[4.23×1 | 0.028 2 |
Cement production |
1.25×1 |
5.91×1 |
[1.08×1 | 0.047 2 |
IIEL |
5.02×1 |
1.31×1 |
[4.62×1 | 0.026 0 |

图8 水泥综合环境负荷的概率密度分布
Fig.8 Probability density distribution of integrated environmental load indicator of Portland cement
由
随着中国垃圾分类的普遍推行,水泥窑协同处置MSW技术也面临着优化革新.MSW分类后,含水率较高的湿垃圾及成分复杂的有害垃圾可经单独预处理后进入水泥窑,以提高MSW的热值替代率、稳定垃圾成分、减少有害组分对水泥熟料性能的影响.此外,对不同特性的垃圾进行单独预处理,还可减少目前所有垃圾统一预处理造成的资源浪费和环境污染.
(1)与常规熟料生产工艺相比,水泥窑协同处置工艺不可再生资源消耗和温室效应的环境负荷分别下降了12.04%、2.61%,且各环境影响类型下的环境负荷均有一定程度的降低,每吨熟料综合环境负荷降幅为7.82%.
(2)4种水泥中,P·O 52.5水泥的综合环境负荷最大,但其单位强度的环境负荷相对较小;水泥熟料系数是影响不同品种水泥环境负荷的重要因素,熟料系数由0.859降低到0.517,水泥综合环境负荷可降低9.76%~37.85%.
(3)综合考虑水泥窑协同处置MSW和熟料系数降低带来的环境效益,对于相同强度等级的水泥,采用常规工艺生产熟料系数为0.775的P·O 42.5水泥与采用水泥窑协同处置工艺生产熟料系数为0.688的P·C 42.5水泥相比,其综合环境负荷降幅为16.87%.
(4)经25 000次蒙特卡洛模拟,水泥综合环境负荷模拟结果的相对标准差低于0.07,不确定度较小;在各生产阶段中,熟料煅烧阶段数据的不确定度最低,而原料开采和运输阶段的不确定度较高.
参考文献
国家统计局. 中国统计年鉴-2022[J]. 北京: 中国统计出版社, 2022. [百度学术]
National Bureau of Statistics. China statistical yearbook‑2022 [J]. Beijing: China Statistics Press, 2022. (in Chinese) [百度学术]
高琦,肖建庄,沈剑羽.园林垃圾对工程弃土烧结砖性能的影响[J].建筑材料学报,2022,25(11):1195‑1202. [百度学术]
GAO Qi, XIAO Jianzhuang, SHEN Jianyu. Effects of garden waste on the properties of sintered bricks prepared with construction spoil[J]. Journal of Building Materials, 2022, 25(11):1195‑1202. (in Chinese) [百度学术]
FAN C C, WANG B M, AI H M, et al. A comparative study on solidification/stabilization characteristics of coal fly ash‑based geopolymer and Portland cement on heavy metals in MSWI fly ash[J]. Journal of Cleaner Production, 2021, 319:128790. [百度学术]
LI X Y, ZHANG H, LIU M J, et al. Emission characteristics of dioxin during solid waste co‑processing in the Chinese cement industry[J]. Journal of Hazardous Materials, 2023, 446:130680. [百度学术]
郭晓潞,李寅雪,袁淑婷.水泥生命周期评价及其低环境负荷研究进展[J].建筑材料学报,2023,26(6):660‑669,677. [百度学术]
GUO Xiaolu, LI Yinxue, YUAN Shuting. Life cycle assessment of cement and its research progress in low environmental load[J]. Journal of Building Materials,2023,26(6):660‑669,677. (in Chinese) [百度学术]
蒋正武,尹军. 可持续混凝土发展的技术原则与途径[J].建筑材料学报,2016,19(6):957‑963. [百度学术]
JIANG Zhengwu, YIN Jun. Technical principles and approaches for development of sustainable concrete[J]. Journal of Building Materials,2016,19(6):957‑963. (in Chinese) [百度学术]
KOSAJAN V, WEN Z G, FEI F, et al. The feasibility analysis of cement kiln as an MSW treatment infrastructure:From a life cycle environmental impact perspective[J]. Journal of Cleaner Production, 2020, 267:603‑614. [百度学术]
HUANG T, TANG Y T, SUN Y, et al. Life cycle environmental and economic comparison of thermal utilization of refuse derived fuel manufactured from landfilled waste or fresh waste[J]. Journal of Environmental Management, 2022, 304:114156. [百度学术]
王晓丽,林忠财.固废基低钙固碳水泥熟料组成设计及烧成过程[J].建筑材料学报,2022,25(11):1115‑1120. [百度学术]
WANG Xiaoli, LIN Zhongcai. Composition design and sintering process of solid waste‑based low‑calcium carbon‑fixing cement clinker[J]. Journal of Building Materials,2022,25(11):1115‑1120. (in Chinese) [百度学术]
郭晓潞,施惠生. MSWIFA制CSA水泥基材料的抗压强度和耐久性[J].建筑材料学报,2014,17(2):201‑205,255. [百度学术]
GUO Xiaolu, SHI Huisheng. Compressive strength and durability of calcium sulphoaluminate(CSA) cement‑based materials from municipal solid waste incineration fly ash(MSWIFA)[J]. Journal of Building Materials, 2014, 17(2):201‑205,255. (in Chinese) [百度学术]
李叶青. 水泥及混凝土绿色低碳制造技术[M]. 北京:中国建材工业出版社, 2022. [百度学术]
LI Yeqing. Green low carbon manufacturing technology of cement and concrete[M]. Beijing:China Building Materials Press, 2022. (in Chinese) [百度学术]
聂鹏. 燃煤火电厂大气汞污染环境影响及其排放标准实施效果数值模拟研究[D].北京:中国环境科学研究院,2014. [百度学术]
NIE Peng. The study on emission standards for coal fired power plants of mercury and simulation of their environmental impact[D]. Beijing:Chinese Research Academy of Environmental Sciences, 2014. (in Chinese) [百度学术]
刘夏璐,王洪涛,陈建,等.中国生命周期参考数据库的建立方法与基础模型[J].环境科学学报,2010,30(10):2136‑2144. [百度学术]
LIU Xialu, WANG Hongtao, CHEN Jian, et al. Method and basic model for development of Chinese reference life cycle database[J]. Acta Scientiae Circumstantiae, 2010,30(10):2136‑2144. (in Chinese) [百度学术]
田佩宁,毛保华,童瑞咏,等.我国交通运输行业及不同运输方式的碳排放水平和强度分析[J].气候变化研究进展,2023,19(3):347‑356. [百度学术]
TIAN Peining, MAO Baohua, TONG Ruiyong, et al. Analysis of carbon emission level and intensity of China’s transportation industry and different transportation modes[J]. Climate Change Research,2023,19(3):347‑356. (in Chinese) [百度学术]
王陶, 张志智, 孙潇磊. 不同柴油生产路径碳排放的分析与比较[J]. 当代石油石化, 2020, 28(12):28‑31,54. [百度学术]
WANG Tao, ZHANG Zhizhi, SUN Xiaolei. Analysis and comparison of carbon emissions from different diesel production routes[J].Petroleum & Petrochemical Today, 2020, 28(12):28‑31,54. (in Chinese) [百度学术]
高峰. 生命周期评价研究及其在中国镁工业中的应用[D]. 北京:北京工业大学, 2008. [百度学术]
GAO Feng. Research on life cycle assessment and the application in China magnesium industry[D]. Beijing:Beijing University of Technology, 2008. (in Chinese) [百度学术]
刘某承,李文华,谢高地.基于净初级生产力的中国生态足迹产量因子测算[J].生态学杂志,2010,29(3):592‑597. [百度学术]
LIU Moucheng, LI Wenhua, XIE Gaodi. Estimation of China ecological footprint production coefficient based on net primary productivity[J].Chinese Journal of Ecology, 2010,29(3):592‑597. (in Chinese) [百度学术]
方海峰,陈轶嵩,许海波.增程式电动轿车全生命周期节能减排效果分析[J].汽车实用技术, 2019, 299(20):22‑25. [百度学术]
FANG Haifeng, CHEN Yisong, XU Haibo. Life cycle assessment of energy conservation and emissions reduction extended‑range electric vehicle[J].Automobile Applied Technology, 2019, 299(20):22‑25. (in Chinese) [百度学术]
GUO X L, LI Y X, SHI H S, et al. Carbon reduction in cement industry ‑ An indigenized questionnaire on environmental impacts and key parameters of life cycle assessment(LCA) in China[J]. Journal of Cleaner Production, 2023, 426:139022. [百度学术]
BICALHO T, SAUER I, RAMBAUD A, et al. LCA data quality:A management science perspective[J]. Journal of Cleaner Production, 2017, 156:888‑898. [百度学术]
YU B, WANG S Y, GU X Y. Estimation and uncertainty analysis of energy consumption and CO2 emission of asphalt pavement maintenance[J]. Journal of Cleaner Production, 2018, 189:326‑333. [百度学术]
邵亦白,刘宇,郑焱,等.利废水泥熟料产品系统的生命周期清单分析方法及应用[J].中国水泥,2022,246(11):59‑62. [百度学术]
SHAO Yibai, LIU Yu, ZHENG Yan, et al. Life cycle inventory analysis method and application of waste clinker product system[J]. China Cement, 2022, 246(11):59‑62. (in Chinese) [百度学术]
侯星宇,张芸,戚昱,等.水泥窑协同处置工业废弃物的生命周期评价[J].环境科学学报,2015,35(12):4112‑4119. [百度学术]
HOU Xingyu, ZHANG Yun, QI Yu, et al. Life cycle assessment of co‑processing industrial waste in a cement kiln[J]. Acta Scientiae Circumstantiae, 2015, 35(12):4112‑4119. (in Chinese) [百度学术]
TAO M, LU D M, SHI Y, et al. Utilization and life cycle assessment of low activity solid waste as cementitious materials:A case study of titanium slag and granulated blast furnace slag[J]. Science of the Total Environment, 2022, 849:157797. [百度学术]
刘祥凯.水泥行业主要气态污染物(SO2、NOx和氟化物)排放特征研究[J].环境与可持续发展, 2016, 41(4):239‑240. [百度学术]
LIU Xiangkai. Research on emission characteristics of primary gaseous pollutants(sulfur dioxide, nitric oxide and fluoride) from the cement industry[J]. Environment and Sustainable Development, 2016, 41(4):239‑240. (in Chinese) [百度学术]
STAFFORD F N, RAUPP‑PEREIRA F, LABRINCHA J A, et al. Life cycle assessment of the production of cement:A Brazilian case study[J]. Journal of Cleaner Production, 2016, 137:1293‑1299. [百度学术]
ZHANG W Y, SHI F F, ZHAO L Y, et al. Effect of biomineralization on the early mechanical properties and microstructure of fly‑ash cement‑based materials[J]. Construction and Building Materials, 2022, 359:129422. [百度学术]
SUPIT S W M, SHAIKH F U A, SARKER P K. Effect of ultrafine fly ash on mechanical properties of high volume fly ash mortar[J]. Construction and Building Materials, 2014, 51:278‑286. [百度学术]