摘要
有机硅涂料通过对侵蚀介质的传输抑制作用以及诱导结晶作用,赋予了水泥基体优越的表面防护效果,显著提升了混凝土结构的耐久性能与安全可靠性.本文归纳了有机硅涂料的分子结构特征及其对胶凝材料的作用机理,全面阐述了有机硅涂料对水泥基材料耐久性能的提升效果,探讨和展望了有机硅涂料在工程应用中存在的主要问题以及未来发展趋势,旨在为水泥基材料耐久性防护的深入研究与应用提供重要的理论指导与工程参考.
中国海洋强国战略的提出极大地促进了广大沿海地区基础设施建设的快速发展.混凝土作为一种被广泛使用的复合胶凝材料,其耐久性决定了滨海环境下混凝土结构的服役寿命与安全性.混凝土的耐久性受到各种恶劣自然环境的制约,包括海水侵蚀、碳化、冻融破坏、紫外老化、风化作用和海浪冲刷
硅烷分子以Si—O键为主链,其侧链通常为烷基或芳香基团.根据其空间排列方式或侧基的不同,线性硅氧烷与环状聚硅氧烷分子可以聚合形成不同相对分子质量的立体异构聚合物,包括交联聚硅氧烷与笼形聚硅氧烷等,如

图1 硅烷分子结构示意图
Fig.1 Schematic diagram of silane and siloxane molecular structure
硅烷分子中硅原子的电子云较为松散,其与水解后形成的羟基键角为109.5°,并且由于硅羟基具有较高的松弛特性,因而通过取代反应形成带电离子或偏极性分子的势垒相对较低.在无定型态的硅氧烷分子中,以硅原子为中心的稳定分支结构与羟基自由端随着溶剂的挥发固化聚合形成了立体网状交联结构.聚硅氧烷分子中Si—O键的键能为452 kJ/mol,远高于其他聚酯类涂料中C—C键的356 kJ/mo
硅烷分子在渗透过程中水解形成的羟基回转半径很小,能够保证烷烃链的自由舒展与定向排列,显著降低了聚硅氧烷界面的偶极矩并产生了强疏水作用.聚硅氧烷分子以静电相互作用为驱动力,以单分子吸附的形式结合在水泥水化产物

图2 聚硅氧烷组分在水泥水化产物的表面吸附与融合
Fig.2 Surface adsorption and fusion of polysiloxane components with cement hydration product
聚硅氧烷层中Si—O—Si键的带宽广且电阻性
聚硅氧烷分子渗透进水泥基体中,与C‑S‑H、CaCO3、Ca(OH)2等水化产物通过二次水化反应形成不溶性硅酸钙螯合

图3 聚硅氧烷对水化产物的孔隙封闭与结晶诱导
Fig.3 Pore sealing and crystallization induction of hydration products by polysiloxan
同时,硅烷水解生成的水分子参与硅酸三钙(C3S)和硅酸二钙(C2S)的水化反应,聚合为具有连续桥接位点的硅酸盐结晶层.硅烷单体在水泥碱性环境下会形成化学梯度势较大的线形硅氧烷聚合
优越的防水性能与抗渗性能是有机硅涂层的重要优势.C‑S‑H凝胶孔道中水分子的传输形态类似于半月板

图4 有机硅涂料作用下凝胶孔道中水的传输抑制
Fig.4 Inhibition of water transport in gel channels with treatment of silane coatin
聚硅氧烷诱导下形成的二次水化产物能够堵塞胶凝材料表面的部分毛细孔与微裂缝,阻碍水的润湿与饱和渗
滨海环境下进入水泥基材内部的氯离子一部分被化学结合并生成Friedel’s盐,一部分被物理吸附继而引起C‑S‑H凝胶层间界面电荷平衡的紊
Coating type | Concrete strength | Curing age/d | Chloride ion diffusion coefficient decrease/% | Reference |
---|---|---|---|---|
Conventional polysiloxane coating | C30 | 28 | 72.20 |
[ |
C40 | 28 | 31.63-89.06 | [26, 36‑39] | |
C45 | 28 | 85.00 |
[ | |
C50 | 28 | 33.67-88.78 | [26‑27, 35, 37‑39] | |
C60 | 28 | 58.40 |
[ | |
Nano‑modified silane coating | C40 | 28 | 72.64-87.61 | [34, 42‑44] |
C50 | 28 | 83.34-85.87 |
[ | |
Siloxane copolymer coating | C30 | 28 | 83.30 |
[ |
C40 | 28 | 66.76-88.97 | [29, 32, 37‑39, 42, 44‑45] | |
C50 | 28 | 70.45-85.94 | [32, 35, 37‑39, 45] | |
C60 | 28 | 50.79-78.48 |
[ |
快速氯离子迁移试验表明,防水抗渗效果越好的有机硅涂料,其表面处理后的混凝土抗氯离子侵入的效果也越
张馨

图5 聚硅氧烷对混凝土中界面过渡区的增强效应
Fig.5 Enhancement effect of polysiloxane on interfacial transition zone in concret
硫酸盐侵蚀是海洋环境下混凝土材料发生侵蚀破坏的重要原因之
钢筋的耐久性防护包括对对钢筋的锈蚀防护以及混凝土保护层的抗开裂防

图6 有机硅涂料处理后混凝土内部钢筋表面形态
Fig.6 Surface morphology of steel bar inside concrete treated with silane coatin
冻融破坏对水泥基材料微结构的影响包括孔隙水结晶导致的体积膨胀、未结冰水向微裂缝浸湿引起的渗透水压、不同水化产物在温度应力作用下产生的损伤破

图7 硅烷处理后混凝土抗冻融性能
Fig.7 Freeze‑thaw resistance of concrete after silane treatment
冻融循环过程中水泥基体凝胶结构的损伤与断裂属于脆性破坏,而聚硅氧烷交联网络能够优化微孔隙端部的受力状态,通过局部的塑性形变传递结晶膨胀压
滨海浪溅区海浪的反复冲蚀作用,以及气候变化、风化、酸雨等户外环境因

图8 有机硅涂层抗磨机理示意图
Fig. 8 Anti‑wear mechanism of siloxane coating
有机硅涂料表面处理主要通过4个方面提升水泥基体表面的抗磨性:
(1)化学反应增强.硅氧烷分子与水泥基体活性组分中的游离氢氧根通过缩合反应形成强效的化学键结
(2)沉积层构建.受到氢键作用与范德华力的影响,聚硅氧烷会在水泥基体表面逐渐吸附,并且反应形成铝硅酸盐沉积
(3)表面硬化.硅氧烷组分与水泥基体反应产生了具有较低钙硅比的硅酸盐晶
(4)润滑作用.具有极低表面张力的有机硅化合物可以在胶凝材料表面形成连续且致密的耐磨润滑层,能够有效减少外力、侵蚀介质以及环境变化所引起的摩擦损
相较于其他聚合物防护涂料,有机硅涂料在大规模混凝土结构表面防护工程的应用推广进展比较缓慢.首先,有机硅涂料的制备与单位面积施工成本比其他成膜型聚合物涂料高30%以上.同时,涂层施工前必须确保混凝土表面干净和相对光滑,否则硅烷结晶层很容易出现开裂、脱落等问题,特别是有机硅涂料对既有混凝土结构的防护保养效果相对较差.有机硅涂料在水泥基材料中的渗透深度仅为3~12 mm,对于大体积混凝土结构以及具有低钢筋保护层厚度钢筋混凝土结构的防护效果相对有限.
有机硅涂层在有压水环境与极端老化环境中,其疏水膜与结晶层极易发生软化与断裂,从而丧失对胶凝材料的防水抗渗性能与抗侵蚀性能.尽管有机硅涂料通过渗透结晶作用具有缺陷修补功能,但由于聚硅氧烷分子的吸附位点与硅酸盐成核速率存在较大的离散性,因而通常只能修复宽度0.2 mm以下的细小裂缝以及直径0.3 mm以下的表层孔洞,严重降低了有机硅涂料对严寒气候下水泥基材料抗冻融性能的提升效果.此外,聚硅氧烷分子中的Si—O—Si键在吸收能量后的弯曲振动频率较高,在多重物理因素以及反复荷载的耦合作用下有机硅涂层会发生明显的性能劣化现象,造成混凝土材料大面积的开裂与剥落,极大地损害了滨海环境下有机硅涂层的结构稳定性以及水泥基体的力学性能与服役寿命.
有机硅涂料通过表面疏水、传输抑制与诱导结晶的方式显著提升了水泥基材料的防水性能、抗离子侵蚀性能、防钢筋锈蚀性能、抗冻融劣化性能与抗磨性能.有机硅涂料的研究与应用不仅可为国家和企业带来巨大的经济利益,还具有重大的社会效益,在未来拥有巨大的应用发展空间.
今后有机硅防护涂料的发展可以从以下几方面工作展开:
(1)改进有机硅涂料的制备流程与合成工艺,调整硅烷单体与化学助剂的配比,在降低有机硅涂料应用成本的同时充分改善其疏水性与防水性能稳定性.聚焦高黏结性与高渗透性有机硅涂料的研发,使其适用于复杂环境下不同水泥基材料表面的快速防护.
(2)推进聚合物杂化以及矿物掺杂等调控手段在制备有机硅涂料中的应用,构建兼具表面屏蔽、传输与渗透结晶的多重防护机制,实现全服役周期内有机硅涂层抗渗性能、抗侵蚀性能与抗冻融性能的显著提高.
(3)基于纳米改性手段提升有机硅涂料对硅酸盐基体微观结构的调控水平,着重于改善硅烷结晶层的强度以及胶凝材料的物相组成与孔结构,从而在宏观层面上实现力学性能与抗磨性能的进一步提升,维持复杂气候变化下对内部钢筋的长效防护.
(4)通过聚合物氢键化、愈合剂外援等方式,赋予有机硅涂料自感知修复功能,规避承载变形、化学腐蚀与冲蚀作用下内部裂缝发展的风险,显著提升有机硅涂层的耐久性与服役寿命.
参考文献
麻海燕,宋姗姗,余红发,等. 环渤海湾海洋混凝土结构的长寿命研究与分析[J]. 建筑材料学报, 2023, 26(8):897‑905. [百度学术]
MA Haiyan,SONG Shanshan,YU Hongfa,et al. Research and analysis on long life of marine concrete structure in Bohai Gulf[J]. Journal of Building Materials, 2023, 26(8):897‑905.(in Chinese) [百度学术]
于剑桥,乔宏霞,朱飞飞,等. 基于GM(1,1)‑Markov模型盐雾侵蚀对纤维混凝土耐久性能的影响[J]. 建筑材料学报, 2022, 25(9):910‑916. [百度学术]
YU Jianqiao,QIAO Hongxia,ZHU Feifei,et al. Effect of salt spray corrosion on durability performance of fiber concrete based on GM(1,1)‑Markov model[J]. Journal of Building Materials, 2022, 25(9):910‑916.(in Chinese) [百度学术]
倪静姁,方翔,王彭生. 海洋环境中硅烷对混凝土结构保护的评估[J]. 腐蚀与防护, 2020, 41(10):29‑32. [百度学术]
NI Jingxu,FANG Xiang,WANG Pengsheng. Assessment of the silane protection of concrete structures in marine environments[J]. Corrosion & Protection, 2020, 41(10):29‑32.(in Chinese) [百度学术]
刘珺,耿永娟,李绍纯,等. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42(1):135‑142. [百度学术]
LIU Jun,GENG Yongjuan,LI Shaochun,et al. Protection efficacy of TEOS/IBTS coating on microbial fouling of concrete in marine tidal areas[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(1):135‑142.(in Chinese) [百度学术]
WOO R S C,ZHU H G, CHOW M M K,et al. Barrier performance of silane‑clay nanocomposite coatings on concrete structure[J]. Composites Science and Technology, 2008, 68(14):2828‑2836. [百度学术]
CZACHOR‑JADACKA D,PILCH‑PITERA B, BYCZYŃSKI A,et al. Hydrophobic polyurethane powder clear coatings with lower curing temperature:Study on the synthesis of new blocked polyisocyanates[J]. Progress in Organic Coatings, 2021, 159:106402. [百度学术]
ZHU L,CHENG X, SU W L,et al. Molecular insights into sequence distributions and conformation‑dependent properties of high‑phenyl polysiloxanes[J]. Polymers, 2019, 11(12):1989. [百度学术]
ZHENG X L,ZHAN Y J, LIU Y C,et al. High intrinsic thermally conductivity side‑chain liquid crystalline polysiloxane films grafted with pendent difunctional mesogenic groups[J]. Polymer Chemistry, 2022, 13(26):3915‑3929. [百度学术]
喻建伟,张朝阳,孔祥明,等. 内掺硅烷乳液憎水剂对混凝土性能的影响[J]. 硅酸盐学报, 2021, 49(2):372‑380. [百度学术]
YU Jianwei,ZHANG Chaoyang,KONG Xiangming,et al. Influence of silane emulsion hydrophobic agent on concrete properties[J]. Journal of the Chinese Ceramic Society, 2021, 49(2):372‑380.(in Chinese) [百度学术]
GUAN B W,HE Z Q, WEI F L,et al. Effects of fly ash and hexadecyltrimethoxysilane on the compressive properties and water resistance of magnesium oxychloride cement[J]. Polymers, 2022, 15(1):172. [百度学术]
WANG Z T,LUO H J, ZHANG J,et al. Water‑soluble polysiloxane sizing for improved heat resistance of basalt fiber[J]. Materials Chemistry and Physics, 2021, 272:125024. [百度学术]
王海良,李懿祯,荣辉,等. 有机硅防护剂对铝酸盐水泥砂浆防护性能的影响[J]. 建筑材料学报, 2019, 22(4):516‑522. [百度学术]
WANG Hailiang,LI Yizhen,RONG Hui,et al. Effect of protective performance of organosilicone protectant agent for aluminate cement mortar[J]. Journal of Building Materials, 2019, 22(4):516‑522.(in Chinese) [百度学术]
王晓辉. 水泥基材料表面超疏水涂料的制备与性能研究[D]. 南京:东南大学, 2018. [百度学术]
WANG Xiaohui. Preparation and properties of superhydrophobic coatings on cement‑based materials[D]. Nanjing:Southeast University, 2018.(in Chinese) [百度学术]
张磊,高瑞晓,荣辉,等. 渗透型有机硅涂覆方式对砂浆防护性能的影响及机制研究[J]. 建筑材料学报, 2019, 22(4):523‑529. [百度学术]
ZHANG Lei,GAO Ruixiao,RONG Hui,et al. Study on protective mechanism of organic silicon coating on mortar[J]. Journal of Building Materials, 2019, 22(4):523‑529.(in Chinese) [百度学术]
齐玉宏,张国梁,池金锋,等. 混凝土防腐涂料的研究进展[J]. 涂料工业, 2018, 48(11):63‑71. [百度学术]
QI Yuhong,ZHANG Guoliang,CHI Jinfeng,et al. Progress in anticorrosive coatings for concrete[J]. Paint & Coatings Industry, 2018, 48(11):63‑71.(in Chinese) [百度学术]
HILL R,WOOD D, THOMAS M. Trimethylsilylation analysis of the silicate structure of fluoro‑alumino‑silicate glasses and the structural role of fluorine[J]. Journal of Materials Science, 1999, 34:1767‑1774. [百度学术]
LIU T J,WANG Z Z, ZOU D J,et al. Strength enhancement of recycled aggregate pervious concrete using a cement paste redistribution method[J]. Cement and Concrete Research, 2019, 122:72‑82. [百度学术]
AL‑AMEERI A S,RAFIQ M I, TSIOULOU O. Combined impact of carbonation and crack width on the chloride penetration and corrosion resistance of concrete structures[J]. Cement and Concrete Composites, 2021, 115:103819. [百度学术]
董一娇,冯春花,盖海东,等. 水泥基渗透结晶型防水涂料活性物质研究[J]. 涂料工业, 2021, 51(1):21‑26. [百度学术]
DONG Yijiao,FENG Chunhua,GAI Haidong,et al. Study on the active substance in cement‑based permeable crystalline waterproof coatings[J]. Paint & Coatings Industry, 2021, 51(1):21‑26.(in Chinese) [百度学术]
ZHANG W J,LI S C, HOU D S,et al. Study on unsaturated transport of cement‑based silane sol coating materials[J]. Coatings, 2019, 9(7):427. [百度学术]
于娇,李萌萌,柴松岳,等. 氧化石墨烯/硅烷涂层分子动力学传输模拟[J]. 建筑材料学报, 2023, 26(9):1039‑1046. [百度学术]
YU Jiao,LI Mengmeng,CHAI Songyue,et al. Molecular dynamics simulation of the transport of graphene oxide/silane composite coatings[J]. Journal of Building Materials, 2023, 26(9):1039‑1046.(in Chinese) [百度学术]
刘冠中. 硅烷浸渍技术在道路桥梁中的防护作用[J]. 交通世界, 2022(4‑6):20‑21. [百度学术]
LIU Guanzhong. Protective effect of silane impregnation technology on road and bridge[J]. Transpoworld, 2022(4‑6):20‑21.(in Chinese) [百度学术]
张文娟,李绍纯,侯东帅,等. 硅烷防护材料的分子动力学模拟及试验[J]. 硅酸盐通报, 2019, 38(12):3884‑3889. [百度学术]
ZHANG Wenjuan,LI Shaochun,HOU Dongshuai,et al. Molecular dynamics simulation and experiment of silane protective materials[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(12):3884‑3889.(in Chinese) [百度学术]
GENG Y J,LI S C, HOU D S,et al. Fabrication of superhydrophobicity on foamed concrete surface by GO/silane coating[J]. Materials Letters, 2020, 265:127423. [百度学术]
SHI D D,GENG Y J, LI S C,et al. Efficacy and mechanism of graphene oxide modified silane emulsions on waterproof performance of foamed concrete[J]. Case Studies in Construction Materials, 2022, 16:e00908. [百度学术]
SHE W,WANG X H, MIAO C W,et al. Biomimetic superhydrophobic surface of concrete:Topographic and chemical modification assembly by direct spray[J]. Construction and Building Materials, 2018, 181:347‑357. [百度学术]
张馨元. 混凝土用硅烷类防护材料的制备及其对混凝土耐久性影响[D]. 青岛:青岛理工大学, 2014. [百度学术]
ZHANG Xinyuan. Preparation of silane protective materials and its effect on durability for concrete[D]. Qingdao:Qingdao University of Technology, 2014.(in Chinese) [百度学术]
张友来. 氧化石墨烯/硅烷复合乳液的制备及其对混凝土耐久性能的影响研究[D]. 青岛:青岛理工大学, 2018. [百度学术]
ZHANG Youlai. Preparation of GO/silane composite emulsion and its effect on durability of concrete[D]. Qingdao:Qingdao University of Technology, 2018.(in Chinese) [百度学术]
WU C,YIN B, HOU D S,et al. A novel strategy of polystyrene acrylate‑polysiloxane core‑shell emulsion for surface protection of cementitious materials[J]. Cement and Concrete Composites, 2022, 133:104720. [百度学术]
GENG Y J,LI S C, HOU D S,et al. Fabrication of superhydrophobicity on foamed concrete surface by GO/silane coating[J]. Materials Letters, 2020, 265:127423. [百度学术]
ZHOU Z H,LI S C, CAO J,et al. The waterproofing effect and mechanism of graphene oxide/silane composite emulsion on cement‑based materials under compressive stress[J]. Construction and Building Materials, 2021, 308:124945. [百度学术]
张舒柳. 荷载‑环境耦合作用下硅烷复合乳液对混凝土的防护效果及机理研究[D]. 青岛:青岛理工大学, 2020. [百度学术]
ZHANG Shuliu. Study on protective effect and mechanism of silane composite emulsion on concrete under load‑environment coupling[D]. Qingdao:Qingdao University of Technology, 2020.(in Chinese) [百度学术]
张鹏,庄智杰,鲍玖文,等. 人工模拟海洋潮汐区应变硬化水泥基复合材料抗氯盐侵蚀性能[J]. 建筑材料学报, 2021, 24(1):1‑6. [百度学术]
ZHANG Peng,ZHUANG Zhijie,BAO Jiuwen,et al. Chloride resistance of strain hardening cementitious composites under the artificially simulated marine tidal zone[J]. Journal of Building Materials, 2021, 24(1):1‑6.(in Chinese) [百度学术]
GENG Y J,LI S C, HOU D S,et al. Effect of SiO2 sol/silane emulsion in reducing water and chloride ion penetration in concrete[J]. Coatings, 2020, 10(7):682. [百度学术]
张友来,李绍纯,侯东帅,等. 氧化石墨烯/硅烷复合乳液对混凝土防渗透性能的影响[J]. 涂料工业, 2018, 48(7):13‑18. [百度学术]
ZHANG Youlai,LI Shaochun,HOU Dongshuai,et al. Effect of GO/silane composite emulsion on permeability resistance of concrete[J]. Paint & Coatings Industry, 2018, 48(7):13‑18.(in Chinese) [百度学术]
田玉鹏. 外涂硅树脂对水泥基材料性能的影响[D]. 青岛:青岛理工大学, 2018. [百度学术]
TIAN Yupeng. Effect of silicone coating on properties of cement‑based materials[D]. Qingdao:Qingdao University of Technology, 2018.(in Chinese) [百度学术]
高岩. 硅烷复合凝胶的制备及其对水泥基材料耐久性能的影响研究[D]. 青岛:青岛理工大学, 2018. [百度学术]
GAO Yan. Preparation of silane composite gel and its effect on the durability of cement‑based materials[D]. Qingdao:Qingdao University of Technology, 2018.(in Chinese) [百度学术]
陈旭. TEOS/异丁基三乙氧基硅烷复合乳液的制备及其对水泥基材料耐久性能的影响[D]. 青岛:青岛理工大学, 2016. [百度学术]
CHEN Xu. Preparation of TEOS/isobutyltriethoxy‑silane composite emulsion and its effect on the durability of cement‑based materials[D]. Qingdao:Qingdao University of Technology, 2016.(in Chinese) [百度学术]
陈旭,李绍纯,徐刚,等. TEOS/异丁基硅烷复合乳液对混凝土防水及抗碳化性能的影响[J]. 硅酸盐通报, 2016, 35(4):1164‑1171. [百度学术]
CHEN Xu,LI Shaochun,XU Gang,et al. Influence of the capillary water absorption and anti carbonization to concrete by TEOS‑isobutyl silane compound emulsion[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(4):1164‑1171.(in Chinese) [百度学术]
张东方,范志宏,唐光星,等. 华南滨海环境下硅烷浸渍混凝土长期防腐性能研究[J]. 水运工程, 2022(3):32‑37, 54. [百度学术]
ZHANG Dongfang,FAN Zhihong,TANG Guangxing,et al. Study on long‑term anticorrosion performance of silane impregnated concrete in coastal environment of South China[J]. Port & Waterway Engineering, 2022(3):32‑37, 54.(in Chinese) [百度学术]
LI S C,ZHANG W J, LIU J,et al. Protective mechanism of silane on concrete upon marine exposure[J]. Coatings, 2019, 9(9):558. [百度学术]
WU C,HOU D S, YIN B,et al. Synthesis and application of new core‑shell structure via Pickering emulsion polymerization stabilized by graphene oxide[J]. Composites Part B:Engineering, 2022, 247:110285. [百度学术]
HOU D S,WU C, YIN B,et al. Investigation of composite silane emulsion modified by in‑situ functionalized graphene oxide for cement‑based materials[J]. Construction and Building Materials, 2021, 304:124662. [百度学术]
WU C,HOU D S, YIN B,et al. Investigation of composite protective coatings coregulated by core‑shell structures and graphene oxide interfaces[J]. ACS Applied Materials & Interfaces, 2022, 14(35):40297‑40312. [百度学术]
张翠. 硅烷乳液/硅溶胶防水材料的制备及其对混凝土耐久性的影响[D]. 青岛:青岛理工大学, 2015. [百度学术]
ZHANG Cui. Preparation of silane emulsion/silica sol waterproof material and its effect on durability of concrete[D]. Qingdao:Qingdao University of Technology, 2015.(in Chinese) [百度学术]
ZENG Y,ZHANG D W, DAI J G,et al. Determining the service life extension of silane treated concrete structures:A probabilistic approach[J]. Construction and Building Materials, 2020, 249:118802. [百度学术]
SAKR M R, BASSUONI M T. Silane and methyl‑methacrylate based nanocomposites as coatings for concrete exposed to salt solutions and cyclic environments[J]. Cement and Concrete Composites, 2021, 115:103841. [百度学术]
倪静姁,陈晓雨,汤雁冰. 海洋环境下涂层与硅烷对混凝土保护效果的对比[J]. 电镀与涂饰, 2022, 41(6):420‑424. [百度学术]
NI Jingxu,CHEN Xiaoyu,TANG Yanbing. Comparative study on anticorrosion of concrete by coating and silane sealing under marine environment[J], Electroplating & Finishing, 2022, 41(6):420‑424.(in Chinese) [百度学术]
ZHAO J H,GAO X, CHEN S Y,et al. Hydrophobic or superhydrophobic modification of cement‑based materials:A systematic review[J]. Composites Part B:Engineering, 2022, 243:110104. [百度学术]
杨永敢,康子豪,詹炳根,等. 初始损伤混凝土的抗硫酸盐侵蚀性能[J]. 建筑材料学报, 2022, 25(12):1255‑1261. [百度学术]
YANG Yonggan,KANG Zihao,ZHAN Binggen,et al. Sulfate resistance of concrete with initial damage[J]. Journal of Building Materials, 2022, 25(12):1255‑1261.(in Chinese) [百度学术]
蒋金洋,郑皓睿,孙国文,等. 硫酸盐侵蚀混凝土的数值模拟[J]. 建筑材料学报, 2023, 26(10):1047‑1053. [百度学术]
JIANG Jinyang,ZHENG Haorui,SUN Guowen,et al. Numerical simulation of sulfate attack in concrete[J]. Journal of Building Materials, 2023, 26(10):1047‑1053.(in Chinese) [百度学术]
ZHANG G Z,WU C, HOU D S,et al. Effect of environmental pH values on phase composition and microstructure of Portland cement paste under sulfate attack[J]. Composites Part B:Engineering, 2021, 216:108862. [百度学术]
MUTHURAMAN U,RAJA M A, SOPHIA M,et al. Influence of silane treatment on the mechanical strength and durability of reactive powder concrete containing recycled fine aggregate[J]. Materials Today:Proceedings, 2022, 62:5444‑5451. [百度学术]
YANG J X,SHE W, ZUO W Q,et al. Rational application of nano‑SiO2 in cement paste incorporated with silane:Counterbalancing and synergistic effects[J]. Cement and Concrete Composites, 2021, 118:103959. [百度学术]
郭宏超,李彤宇,王德法,等. 海洋环境下锈蚀高强度钢材滞回性能[J]. 建筑材料学报, 2021, 24(4):781‑787. [百度学术]
GUO Hongchao,LI Tongyu,WANG Defa,et al. Hysteretic properties of corroded high strength steel in marine environment[J]. Journal of Building Materials, 2021, 24(4):781‑787.(in Chinese) [百度学术]
GENG Y J,ZHOU P J, LI S C,et al. Superior corrosion resistance of mild steel coated with graphene oxide modified silane coating in chlorinated simulated concrete solution[J]. Progress in Organic Coatings, 2022, 164:106716. [百度学术]
CRIADO M,SOBRADOS I, SANZ J,et al. Steel protection using sol‑gel coatings in simulated concrete pore solution contaminated with chloride[J]. Surface and Coatings Technology, 2014, 258:485‑494. [百度学术]
徐士林. 硅烷复合乳液对水泥基材料抗裂性能的影响及机理研究[D]. 青岛:青岛理工大学, 2021. [百度学术]
XU Shilin. Effect of silane composite emulsion on cracking resistance of cement‑based materials and its mechanism[D]. Qingdao:Qingdao University of Technology, 2021.(in Chinese) [百度学术]
高岩,耿永娟,李绍纯,等. 硅烷复合乳液对水泥基材料中钢筋的防护效果[J]. 混凝土, 2017(12):151‑153. [百度学术]
GAO Yan,GENG Yongjuan,LI Shaochun,et al. Protective effect of silane composite emulsion on reinforcement in cement‑based materials[J]. Concrete, 2017(12):151‑153.(in Chinese) [百度学术]
JIN S S,ZHENG G P, YU J. A micro freeze‑thaw damage model of concrete with fractal dimension[J]. Construction and Building Materials, 2020, 257:119434. [百度学术]
LIU Z C, HANSEN W. Effect of hydrophobic surface treatment on freeze‑thaw durability of concrete[J]. Cement and Concrete Composites, 2016, 69:49‑60. [百度学术]
赵炜,黄巍林,宋强,等. 冻融环境下硅烷防水混凝土渗透性试验研究[J]. 混凝土, 2016(8):39‑42. [百度学术]
ZHAO Wei,HUANG Weilin,SONG Qiang,et al. Experimental study on permeability of silane waterproof concrete in freeze‑thaw environment[J]. Concrete, 2016(8):39‑42.(in Chinese) [百度学术]
赵长勇,马志鸣. 冻融‑氯盐耦合作用下整体防水混凝土耐久性试验研究[J]. 混凝土, 2016(9):12‑15. [百度学术]
ZHAO Zhangyong,MA Zhiming. Experimental study on durability of integral waterproof concrete under freeze‑thaw‑chloride[J]. Concrete, 2016(9):12‑15.(in Chinese) [百度学术]
朱方之,赵铁军,王鹏刚. 内掺和外涂硅烷防水混凝土抗盐冻剥蚀性能研究[J]. 硅酸盐通报, 2015, 34(8):2157‑2162. [百度学术]
ZHU Fangzhi,ZHAO Tiejun,WANG Penggang. Deicer‑scaling resistance performance of water‑repellent concrete surface treated and doped with silane[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(8):2157‑2162.(in Chinese) [百度学术]
杨冬鹏. 不同防护涂层对水工混凝土抗冻性能的影响研究[J]. 水利技术监督, 2020(4):155‑158. [百度学术]
YANG Dongpeng. Effect of different protective coatings on frost resistance of hydraulic concrete[J]. Technical Supervision in Water Resources, 2020(4):155‑158.(in Chinese) [百度学术]
MA Z M,ZHU F Z, ZHAO T J. Effects of surface modification of silane coupling agent on the properties of concrete with freeze‑thaw damage[J]. KSCE Journal of Civil Engineering, 2018, 22(2):657‑669. [百度学术]
BONDI A. On the properties of fluorocarbon and polysiloxane fluids[J]. The Journal of Physical Chemistry, 1951, 55(8):1355‑1368. [百度学术]
高菁. 硅烷乳液对泡沫混凝土的防水、防覆冰性能影响及机理研究[D]. 青岛:青岛理工大学, 2021. [百度学术]
GAO Jing. Effect of silane emulsion on water and ice resistance of foamed concrete and its mechanism[D]. Qingdao:Qingdao University of Technology, 2021.(in Chinese) [百度学术]
HERB H,GERDES A, BRENNER‑WEIß G. Characterization of silane‑based hydrophobic admixtures in concrete using TOF‑MS[J]. Cement and Concrete Research, 2015, 70:77‑82. [百度学术]
ESPOSITO CORCIONE C,STRIANI R, CAPONE C,et al. Preliminary study of the application of a novel hydrophobic photo‑polymerizable nano‑structured coating on concrete substrates[J]. Progress in Organic Coatings, 2018, 121:182‑189. [百度学术]
刘子珣. 有机硅树脂涂料的制备及性能研究[D]. 广州:华南理工大学, 2013. [百度学术]
LIU Zixun. Preparation and properties of organosilicone resin coatings[D]. Guangzhou:South China University of Technology, 2013.(in Chinese) [百度学术]
WANG F J,LEI S, OU J F,et al. Effect of PDMS on the waterproofing performance and corrosion resistance of cement mortar[J]. Applied Surface Science, 2020, 507:145016. [百度学术]
KANG H,KANG S, LEE B. Strength and water‑repelling properties of cement mortar mixed with water repellents[J]. Materials, 2021, 14(18):5407. [百度学术]
朱懋江,翁兴中,高瑞,等. 机场道面混凝土表面强化材料的性能研究[J]. 山东农业大学学报(自然科学版), 2018, 49(2):295‑302. [百度学术]
ZHU Maojiang,WENG Xingzhong,GAO Rui,et al. Study on performance of reinforced concrete material for airport pavement[J]. Journal of Shandong Agricultural University (Natural Science),2018, 49(2):295‑302.(in Chinese) [百度学术]