摘要
采用工业CT对混凝土中的钢渣颗粒和普通石子进行三维扫描,获得两者在形貌上的差异.将钢渣颗粒按体积分数3%、6%和9%掺入混凝土中,并使用工业CT扫描获得不同掺量钢渣颗粒混凝土试样的形貌学特征.基于图像相似法得到钢渣颗粒的灰度范围,并采用该灰度范围对图像进行二值化处理,计算钢渣颗粒的掺量.结果表明:钢渣颗粒掺量的计算结果与实际掺入的钢渣颗粒体积分数较为接近,误差范围小于10%,具有较高精度.结合实际工程案例,采用工业CT和X射线荧光光谱分析仪(XRF)等测试手段,对钢渣颗粒引发的混凝土外观质量事故成因进行科学分析.
混凝土材料是最大宗的建筑材料,自然成为消纳钢渣等工业固废的主要方向.大量研
钢渣作为冶金行业的副产品,质量水平受冶炼方式、排渣方式和造渣方法等诸多环节影
工业CT是表征材料内部结构的常用手
钢渣来源于南京钢铁股份有限公司,表观密度为3.08 g/c

图1 钢渣颗粒的外观形貌
Fig.1 Appearance morphologies of steel slag particles
石子为石灰岩,表观密度为2.65 g/c
Sieve size/mm | 26.5 | 19 | 16 | 9.5 | 4.75 | 2.36 | 0 |
---|---|---|---|---|---|---|---|
Accumulated sieve residue(by mass)/% | 0 | 20 | 55 | 64 | 91 | 98 | 100 |
将2种形貌的钢渣颗粒和石子研磨成粉末,采用X射线荧光光谱分析仪(XRF)测试其化学组成,结果见
Material type | SiO2 | CaO | Fe2O3 | MgO | Al2O3 | SO3 | Na2O | K2O | TiO2 | P2O5 | MnO | V2O5 | Cr2O3 | SrO | Cl | Other |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Steel slag A | 12.82 | 41.43 | 26.55 | 4.50 | 1.86 | 0.28 | 0.13 | 0.02 | 1.01 | 2.80 | 3.53 | 0.36 | 0.33 | 0.04 | 0.04 | 4.31 |
Steel slag B | 11.69 | 42.16 | 28.65 | 4.60 | 1.72 | 0.28 | 0.10 | 0.01 | 1.00 | 2.84 | 3.48 | 0.40 | 0.31 | 0.04 | 0.02 | 2.71 |
Stone | 21.96 | 72.96 | 0.64 | 1.25 | 0.71 | 0.10 | 0.27 | 0.17 | 0.05 | 0.03 | 0.04 | — | — | 0.10 | — | 1.71 |
水泥采用安徽海螺水泥厂产P·O 42.5普通硅酸盐水泥,化学组成见
SiO2 | CaO | Fe2O3 | MgO | Al2O3 | SO3 | IL |
---|---|---|---|---|---|---|
21.20 | 64.37 | 4.42 | 0.55 | 5.32 | 2.00 | 1.50 |
Sieve size/mm | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0 |
---|---|---|---|---|---|---|---|
Accumulated sieve residue(by mass)/% | 4 | 15 | 30 | 57 | 82 | 92 | 100 |
设计混凝土强度等级为C30,按体积分数0%、3%、6%和9%,将钢渣颗粒掺入混凝土中.混杂钢渣颗粒混凝土的配合比如
Code | Cement | Water | Sand | Gravel | Steel slag | Admixture |
---|---|---|---|---|---|---|
1 | 390.0 | 165.0 | 735.0 | 1 110.0 | 0 | 3.9 |
2 | 390.0 | 165.0 | 735.0 | 1 028.0 | 92.4 | 4.2 |
3 | 390.0 | 165.0 | 735.0 | 949.0 | 184.8 | 4.5 |
4 | 390.0 | 165.0 | 735.0 | 869.0 | 277.2 | 4.9 |
需要说明的是,随着钢渣颗粒掺量的增加,混杂钢渣颗粒混凝土的工作性有所下降,本试验通过调整外加剂掺量的方式,将混凝土坍落度保持在120~150 mm,以减少混凝土工作性变化对其微观结构体系的影响.
2种外观形貌的钢渣颗粒和石子的工业CT扫描结果如

图2 钢渣颗粒和石子的工业CT扫描结果
Fig.2 Industrial CT scan results of steel slag particles and stone
在2种钢渣颗粒和石子的相应区域进行灰度取值计算,结果如
Material type | Minimum | Maximum | Mean | Deviation |
---|---|---|---|---|
Stone | 526.00 | 733.00 | 634.71 | 28.45 |
Steel slag A | 795.00 | 1 155.00 | 978.73 | 53.43 |
Steel slag B | 713.00 | 1 046.00 | 899.93 | 40.69 |
将灰度值设为0~5,对CT图像进行二值化处理,结果如

图3 二值化处理后钢渣颗粒和石子的工业CT扫描结果
Fig.3 Industrial CT scan results of steel slag particles and stone after binarization
对混杂钢渣颗粒混凝土试样进行工业CT扫描,结果如

图4 混杂钢渣颗粒混凝土试样的工业CT三维扫描照片
Fig.4 Industrial CT images of concrete samples containing steel slag particles
赋上特定的灰度值后可以进行图像二值化处理,在此基础上借助工业CT设备自带的计算软件或其他商用图像处理软件能够计算出钢渣颗粒的体积分数.由此可见,如何确定合适的灰度值成为精确测量钢渣体积分数的关键因素.目前,一般有2种确定合适灰度值的方法——(1)图像相似法 选择CT图像中具有代表性的3~5个切面,先赋于1个灰度值范围,生成仿真图像;再比较实际图像与仿真图像之间的差异,调整灰度值范围,使仿真图像接近实际切面;最后通过迭代循环,确保选择的灰度值所生成的仿真图像均能与实际图像一致.其流程图如

图5 图像相似法流程图
Fig.5 Flow chart of image similarity method
本文分别采用钢渣颗粒的灰度值上限(1 100.00±50.00)、灰度平均值(900.00±50.00)、钢渣灰度值下限(750.00±50.00),以及图像相似法计算混凝土试样中混杂钢渣的体积分数,结果如
Method | φ(steel slag)/% | |||
---|---|---|---|---|
3 | 6 | 9 | ||
Grayscale value | 1 100.00±50.00 | 2.38 | 5.13 | 8.29 |
900.00±50.00 | 3.15 | 6.21 | 9.17 | |
750.00±50.00 | 3.72 | 6.87 | 9.72 | |
Image similarity method | 3.10 | 6.19 | 8.97 |
将基于图像相似法获得的测试结果进行三维重构,结果如

图6 基于图像相似法获得的混凝土混杂钢渣颗粒的三维重构图
Fig.6 3D reconstruction of concrete mixed with steel slag particles based on image similarity method
某工程总建筑面积118 000

图7 楼板现场照片
Fig.7 Site photo of floor slab
按照爆点数量,将现场混凝土构件分为外观质量较好区域(爆点数小于等于3个/

图8 不同区域芯样的三维扫描及重构结果
Fig.8 3D scanning and reconstruction results of core samples in different areas
为进一步明确异常物质的化学组成,分别在表面爆点处和外观完整处钻取粉样,采用X射线荧光光谱分析(XRF)进行测试其化学组成,结果如
Location | SiO2 | CaO | Fe2O3 | MgO | Al2O3 | SO3 | Na2O | K2O | TiO2 | P2O5 | MnO | V2O5 | Cr2O3 | SrO | Cl | Other |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Explosion point area | 28.24 | 42.62 | 10.61 | 2.08 | 8.36 | 1.25 | 0.70 | 1.02 | 0.47 | 0.56 | 0.37 | 0.13 | 0.22 | 0.06 | 0.01 | 3.30 |
Intact appearance area | 32.18 | 43.43 | 5.55 | 1.98 | 7.68 | 1.38 | 0.80 | 1.00 | 0.53 | 0.65 | 0.41 | 0.15 | 0.23 | 0.06 | 0.01 | 3.96 |
(1)工业CT能够分辨出混杂在混凝土中的钢渣颗粒.钢渣颗粒较普通石子具有更高的密度,其CT扫描结果所呈现的灰度值比普通石子高300.00左右,钢渣颗粒呈现明显的亮色.
(2)分别采用给定灰度范围和基于图像相似法来定量计算混凝土中钢渣颗粒的体积分数.合适的灰度取值范围对精确计算钢渣颗粒的体积分数十分重要.基于图像相似法获得的钢渣颗粒体积分数灰度范围具有较高的精度,且能在无法预先获得钢渣颗粒灰度的情况下用于工程事故诊断分析.
(3)采用工业CT、X射线荧光光谱分析仪(XRF)及化学组成测试结果,明确了案例中的混凝土外观质量问题是由钢渣颗粒所导致的,该测试成果获得工程案例各参与方的认可.
(4)工业CT能够对混杂在混凝土中的钢渣进行精准定量分析,不仅有助于鉴别混凝土中是否混杂钢渣颗粒,而且为钢渣颗粒危害性评估提供了技术支撑.
参考文献
SHAKR PIRO N, MOHAMMED A, HAMAD S M, et al. Electrical resistivity‑compressive strength predictions for normal strength concrete with waste steel slag as a coarse aggregate replacement using various analytical models [J]. Construction and Building Materials, 2022, 327:127008. [百度学术]
XUE G, FU Q, XU S, et al. Macroscopic mechanical properties and microstructure characteristics of steel slag fine aggregate concrete [J]. Journal of Building Engineering, 2022, 56:104742. [百度学术]
MO L W, YANG S, HUANG B, et al. Preparation, microstructure and property of carbonated artificial steel slag aggregate used in concrete [J]. Cement and Concrete Composites, 2020, 113:103715. [百度学术]
COSTA L C B, NOGUEIRA M A, ANDRADE H D, et al. Mechanical and durability performance of concretes produced with steel slag aggregate and mineral admixtures [J]. Construction and Building Materials, 2022, 318:126152. [百度学术]
SAI KEERTAN T, PAVAN KUMAR V, BOMMISETTY J, et al. High strength fiber reinforced concrete with steel slag as partial replacement of coarse aggregate:Overview on mechanical and microstructure analysis [J]. Materials Today:Proceedings, 2023:1‑6. [百度学术]
SUN K, PENG X, CHU S H, et al. Utilization of BOF steel slag aggregate in metakaolin‑based geopolymer [J]. Construction and Building Materials, 2021, 300:124024. [百度学术]
ANDRADE H D, DE CARVALHO J M F, COSTA L C B, et al. Mechanical performance and resistance to carbonation of steel slag reinforced concrete [J]. Construction and Building Materials, 2021, 298:123910. [百度学术]
全国钢标准化技术委员会. 用于水泥和混凝土中的钢渣粉:GB/T 20491—2017[S]. 北京:中国标准出版社, 2017. [百度学术]
Technical Committee 183 on Steel of Standardization Administration of China. Steel slag powder used for cement and concrete:GB/T 20491—2017[S]. Beijing:Standards Press of China, 2017. (in Chinese) [百度学术]
全国钢标准化技术委员会. 钢渣应用技术要求:GB/T 32546—2016[S]. 北京:中国标准出版社, 2016. [百度学术]
Technical Committee 183 on Steel of Standardization Administration of China. Technical requirements for application of steel slag:GB/T 32546—2016[S]. Beijing:Standards Press of China, 2016. (in Chinese) [百度学术]
张力, 李招, 尹立鹤, 等. 某混凝土结构爆裂的检测与加固 [J]. 建筑结构, 2021, 51(增刊1):1639‑1642. [百度学术]
ZHANG Li, LI Zhao, YIN Lihe, et al. Detection and renovation for heave and burst of a slag concrete structure [J]. Building Structure, 2021, 51(Suppl 1):1639‑1642. (in Chinese) [百度学术]
张亚梅, 李保亮. 用钢渣作骨料引起的混凝土工程开裂问题案例分析 [J]. 混凝土世界, 2016(6):22‑25. [百度学术]
ZHANG Yamei, LI Baoliang. Case study of cracking problems in concrete engineering caused by using steel slag as aggregate [J]. China Concrete, 2016(6):22‑25. (in Chinese) [百度学术]
王枫, 高波. 某学校混凝土爆裂事故原因分析 [J]. 混凝土与水泥制品, 2011(12):53‑55. [百度学术]
WANG Feng, GAO Bo. Analysis on reasons for concrete blowout accident in a school [J]. China Concrete and Cement Products, 2011(12):53‑55. (in Chinese) [百度学术]
GENCEL O, KARADAG O, OREN O H, et al. Steel slag and its applications in cement and concrete technology:A review [J]. Construction and Building Materials, 2021, 283:122783. [百度学术]
MO L W, YANG S, HUANG B, et al. Preparation, microstructure and property of carbonated artificial steel slag aggregate used in concrete [J]. Cement and Concrete Composites, 2020,113:103715. [百度学术]
DAI S, ZHU H J, ZHAI M N, et al. Stability of steel slag as fine aggregate and its application in 3D printing materials [J]. Construction and Building Materials, 2021, 299:123938. [百度学术]
KUO W T, SHU C Y. Application of high‑temperature rapid catalytic technology to forecast the volumetric stability behavior of containing steel slag mixtures [J]. Construction and Building Materials, 2014,50:463‑470. [百度学术]
韩檬, 张亮亮, 卢忠飞, 等 钢渣安定性评价方法的比较 [J]. 环境工程, 2022, 40(2):235‑239. [百度学术]
HAN Meng, ZHANG Liangliang, LU Zhongfei, et al. Comparative analysis of evaluation methods for steel slag soundness [J]. Environmental Engineering, 2022, 40(2):235‑239. (in Chinese) [百度学术]
WANG Q, WANG D Q, ZHUANG S Y. The soundness of steel slag with different free CaO and MgO contents [J]. Construction and Building Materials, 2017, 151:138‑146. [百度学术]
DONG Q, WANG G T, CHEN X Q, et al. Recycling of steel slag aggregate in portland cement concrete:An overview [J]. Journal of Cleaner Production, 2021, 282:124447. [百度学术]
JIANG Y, LING T C, SHI C J, et al. Characteristics of steel slags and their use in cement and concrete—A review [J]. Resources, Conservation and Recycling, 2018, 136:187‑197. [百度学术]
SKARŻYŃSKI Ł, SUCHORZEWSKI J. Mechanical and fracture properties of concrete reinforced with recycled and industrial steel fibers using digital image correlation technique and X‑ray micro computed tomography [J]. Construction and Building Materials, 2018, 183:283‑99. [百度学术]
SIETINS J M, GREEN W H, JONES J S. Materials evaluation using X‑ray computed tomography [M]. Oxford:Elsevier, 2023:159‑199. [百度学术]