摘要
通过室内常规三轴压缩试验,分析了膨润土对塑性混凝土应力-应变曲线和主要力学指标的影响,并采用扫描电镜和X射线衍射等技术揭示了其宏观力学特性演变的微观机理.结果表明:随着膨润土掺量的增加,塑性混凝土体积膨胀变形量逐渐减小,应力-应变曲线表现出更加显著的延展性,峰值应力明显减小,峰值应变逐渐增大,模强比呈增加趋势,黏聚力先增后减,内摩擦角先减后增.掺入膨润土可大幅增加塑性混凝土微观颗粒的孔洞通道,低掺量膨润土发挥出较好的骨料间隙填充效果,削弱了颗粒棱角,提高了结构的致密性;当膨润土掺量过高时,界面过渡区出现低黏结团聚体,颗粒表面粗糙度增加.膨润土对塑性混凝土宏观力学性能的影响主要是由塑化效应增加颗粒孔隙通道和固化效应填充颗粒间隙两者协同作用的结果.
塑性混凝土是由水泥、膨润土、砂石骨料和水等掺合料组成的柔性材料,具有弹性模量低、应变大,以及适应周围土体变形能力强等特
国内外众多学者通过室内试验、理论分析和数值模拟等多种手段对塑性混凝土的力学特性展开了大量研
塑性混凝土的力学性能较为复杂,其关键力学指标变化规律受材料组分的影响与普通混凝土和土料存在显著差异,已有研究尚未取得共识.目前塑性混凝土力学特性研究大多集中于宏观尺度方面,从微观角度揭示其宏观力学演变机理的研究则较少.
鉴于此,本文通过开展常规三轴压缩试验,重点探究了不同膨润土掺量下塑性混凝土的宏观力学性能,并采用SEM和X射线衍射(XRD)等微观技术手段,进一步分析了膨润土对塑性混凝土微观结构和晶体物相的影响,以期从微观尺度揭示其宏观力学性能演变机理,为更加深入、全面地研究塑性混凝土奠定基础.
水泥采用鑫达山P·O 42.5普通硅酸盐水泥,28 d抗压强度、抗折强度分别为45.80、7.20 MPa;膨润土采用钠基膨润土,其主要性能指标见
Wt/% | Wp/% | Ip/% | Moisture content(by mass)/% | Density/(kg· | Sieve residue(by mass) /% | |
---|---|---|---|---|---|---|
<0.005 mm | 0.005-0.075 mm | |||||
54.10 | 16.20 | 37.90 | 0.90 | 2 744.00 | 45.50 | 51.40 |
Note: Wt—liquid limit;Wp—plastic limit;Ip—swelling index.
本研究结合实际工程需求,通过工程类比方法设计了3组膨润土掺量,分别为70、85、100 kg/
Specimen No. | Mix proportion/(kg· | mW/mC | |||
---|---|---|---|---|---|
Cement | Bentonite | Gravel | Water | ||
K1 | 140 | 70 | 866 | 290 | 2.07 |
K2 | 160 | 70 | 857 | 290 | 1.81 |
K3 | 180 | 70 | 848 | 290 | 1.61 |
K4 | 140 | 85 | 851 | 295 | 2.11 |
K5 | 160 | 85 | 842 | 295 | 1.84 |
K6 | 180 | 85 | 833 | 295 | 1.64 |
K7 | 140 | 100 | 834 | 302 | 2.16 |
K8 | 160 | 100 | 825 | 302 | 1.89 |
K9 | 180 | 100 | 816 | 302 | 1.68 |
常规三轴压缩试验按照GB/T 5013—2019《土工试验方法标准》进行.试验仪器为SY250型应变式三轴压缩仪,通过外体变量测装置对试件的体积应变进行测量,体变量测量精度为0.1 mL.试验加载速率取为0.4 mm/min,可有效降低阻尼效应的影响,允许微裂缝产生,保证整个试验过程在静态条件下进行.
在200 kPa围压下,膨润土掺量与塑性混凝土应力-应变曲线及体应变-轴向应变的关系如

图1 膨润土掺量与塑性混凝土应力-应变曲线及体应变-轴向应变的关系
Fig.1 Effect of bentonite content on stress‑strain curves and volumetric strain‑axial strain of plastic concretes
塑性混凝土强度发展主要是塑化效应和固化效应不断演变的结

图2 塑性混凝土强度发展塑化效应和固化效应示意图
Fig.2 Schematic diagram of plasticization effect and consolidation effect of plastic concrete
膨润土掺量与塑性混凝土峰值应力和峰值应变的关系如

图3 膨润土掺量与塑性混凝土峰值应力和峰值应变的关系
Fig.3 Effect of bentonite content on peak stress and peak strain of plastic concrete
模强比即混凝土材料弹性模量(E)与抗压强度(f)的比值.防渗墙材料的力学特性一般需要满足2个要求,即足够的强度以承受坝体的质量和较低的弹性模量以适应周围土体的变形.因此低模强比有利于提高墙体的变形协调能力,改善墙体的受力状态.
实际工程中塑性混凝土的模强比一般介于100~300之间,本研究中塑性混凝土试件的模强比范围为150~350,表明本文塑性混凝土试件配合比参数设计符合实际工程需求.在200 kPa围压下,膨润土掺量与塑性混凝土模强比的关系如

图4 膨润土掺量与塑性混凝土模强比的关系
Fig.4 Relationship between bentonite content and modulus‑strength ratio of plastic concretes
混凝土的抗剪强度主要包括黏聚力和内摩擦力,其中黏聚力代表颗粒之间相互的胶结作用,内摩擦力表示颗粒之间的咬合摩擦作用.膨润土掺量与塑性混凝土抗剪强度的关系如

图5 膨润土掺量与塑性混凝土抗剪强度的关系
Fig.5 Relationship between bentonite content on shearing strength of plastic concrete
随着膨润土掺量的增加,塑性混凝土固化效应和水泥水化作用产生的C‑S‑H等凝胶增强了颗粒之间的胶结作用,结构内部胶结团聚体增多,缓解了颗粒摩擦互锁现象,因此黏聚力增加,内摩擦力减小;当膨润土掺量达到阈值时,塑性混凝土的固化效应和塑化效应处于相对平衡状态,C‑S‑H和C‑A‑H等水化胶凝产物生成量最大,颗粒之间的胶结效果最佳,黏聚力达到峰值;当膨润土掺量超过阈值时,大量水分子被膨润土薄膜吸收,塑化效应一直处于饱和状态,抑制了水泥的水化反应和膨润土固化效应,塑性混凝土的水化产物凝胶体减少,颗粒间胶结作用减弱,塑性混凝土的黏聚力降低,此时主要通过颗粒摩擦互锁作用提供抗剪强度.
塑性混凝土属于非均质多孔复合材料,内部微观结构对其宏观力学特性的影响是研究该材料力学性能发展演化机理的关键.为分析膨润土掺量对塑性混凝土微观结构的影响,分别对不同膨润土掺量试件进行SEM和XRD分析.将膨润土渗入水泥浆中后,水泥的水化产物CH溶解稀释出C

图6 膨润土掺量对微观颗粒孔洞的影响
Fig.6 Effect of bentonite content on micro‑particle pores

图7 膨润土掺量对微观颗粒间隙的影响
Fig.7 Effect of bentonite content on micro‑particle intervals
由
由
不同膨润土掺量试样的XRD图谱如

图8 不同膨润土掺量试样的XRD图谱
Fig.8 XRD patterns of samples at different bentonite contents
(1)随着膨润土掺量的增加,塑性混凝土膨胀体积变形量逐渐减小,应力-应变曲线表现出更为显著的延展性;峰值应力显著下降,峰值应变逐渐增大,模强比呈增大趋势;黏聚力与内摩擦角的变化规律完全相反,黏聚力呈先增后减趋势,而内摩擦角先减后增.
(2)掺入膨润土大幅度增加了塑性混凝土微观颗粒的孔洞通道.低掺量膨润土可以发挥较好的骨料间隙填充效果,削弱颗粒棱角,提高微观结构的致密性;当膨润土掺量过多时,膨润土颗粒未完全水化,界面过渡区(ITZ)出现低黏结强度的颗粒聚集体,颗粒表面粗糙度增加.
(3)低掺量膨润土会促进塑性混凝土的火山灰反应,增加CH的消耗量,而高掺量膨润土在一定程度上对火山灰反应和水泥水化反应有延缓作用.膨润土对塑性混凝土宏观力学特性影响的微观机理主要是塑化效应增加颗粒孔隙通道和固化效应填充颗粒间隙两者协同作用的结果.
参考文献
高丹盈, 宋帅奇. 塑性混凝土常规三轴性能与强度计算模型[J].水力发电学报, 2014, 33(2):201‑207. [百度学术]
GAO Danying, SONG Shuaiqi. Performance and strength calculation model of plastic concrete under conventional tri‑axial stress[J]. Journal of Hydroelectric Engineering, 2014, 33(2):201‑207. (in Chinese) [百度学术]
王升位, 闻一江, 洪项华,等. 配合比和龄期对塑性混凝土强度、pH值和电导率的影响[J]. 建筑材料学报, 2022, 25(1):97‑101. [百度学术]
WANG Shengwei,WEN Yijiang, HONG Xianghua,et al. Effect of mix proportion and age on strength, pH value, electrical conductivity of plastic concrete[J]. Journal of Buliding Materials, 2022, 25(1):97‑101. (in Chinese) [百度学术]
王清友,孙万功,熊欢. 塑性混凝土防渗墙[M]. 北京:中国水利水电出版社, 2008:24‑46. [百度学术]
WANG Qingyou, SUN Wangong, XIONG Huan. Plastic concrete cut‑off wall [M]. Beijing:China Water & Power Press, 2008:24‑46. (in Chinese) [百度学术]
AKBARPOUR A, MAHDIKHANI M, MOAYED R Z. Mechanical behavior and permeability of plastic concrete containing natural zeolite under triaxial and uniaxial compression[J]. Journal of Materials in Civil Engineering, 2022, 34(2):04021453. [百度学术]
杨哲, 饶锡保, 谭凡, 等. 不同期龄塑性混凝土力学性能试验研究[J]. 人民长江, 2020, 51(增刊1):184‑187, 227. [百度学术]
YANG Zhe, RAO Xibao, TAN Fan, et al. Experimental study on mechanical properties of plastic concrete at different ages[J]. Yangtze River, 2020, 51(Suppl 1):184‑187, 227.(in Chinese) [百度学术]
王四巍, 孙逢涛, 吴华. 三轴应力下再生粗骨料塑性混凝土的力学性能和破坏准则[J]. 建筑材料学报, 2020, 23(2):454‑459. [百度学术]
WANG Siwei, SUN Fengtao, WU Hua. Mechanical properties anad failure criteria of recycled plastic concrete under triaxial stresses[J]. Journal of Buliding Materials, 2020, 23(2):454‑459. (in Chinese) [百度学术]
焦凯, 党发宁, 谢凯军. 膨润土与水泥掺比对塑性混凝土变形特性的影响[J]. 水利水运工程学报, 2016 (4):76‑84. [百度学术]
JIAO Kai, DANG Faning, XIE Kaijun. Effects of bentonite‑cement mix ratio on strength characteristics of plastic concrete[J]. Journal of Hydroelectric Engineering, 2016 (4):76‑84. (in Chinese) [百度学术]
宋博, 何江涛, 刘长礼. 不同荷载作用下塑性混凝土渗透性试验研究[J]. 南水北调与水利科技, 2015, 13(2):309‑313. [百度学术]
SONG Bo, HE Jiangtao, LIU Changli. Experimental study on permeability of plastic concrete under different load levels[J]. South‑to‑North Water Transfers and Water Science & Technology, 2015, 13(2):309‑313.(in Chinese) [百度学术]
常芳芳, 刘璐璐, 宋力. 三轴作用下塑性混凝土应力应变特性试验[J]. 人民黄河, 2015, 37(2):133‑135. [百度学术]
CHANG Fangfang,LIU Lulu,SONG Li. Study on stress‑strain characteristics of plastic concrete under triaxial[J].Yellow River, 2015, 37(2):133‑135. (in Chinese) [百度学术]
王四巍, 潘旭威, 高丹盈, 等. 三轴应力下塑性混凝土应力-应变关系试验研究[J]. 建筑材料学报, 2014, 17(1):42‑46, 59. [百度学术]
WANG Siwei, PAN Xuwei, GAO Danying, et al. Experiment study of stress‑strain relation of plastic concrete under triaxial stress[J]. Journal of Buliding Materials, 2014, 17(1):42‑46, 59. (in Chinese) [百度学术]
HINCHBERGER S, WECK J, NEWSON T. Mechanical and hydraulic characterization of plastic concrete for seepage cut‑off walls[J]. Canadian Geotechnical Journal, 2010, 47(4):461‑471. [百度学术]
王四巍, 李小超, 李杨, 等. 膨润土及水泥用量对塑性混凝土变形及破坏特征的影响[J]. 硅酸盐学报, 2014, 42(1):33‑37. [百度学术]
WANG Siwei, LI Xiaochao, LI Yang, et al. Effects of bentonite and cement content on plastic concrete deformation and failure[J]. Journal of the Chinese Ceramic Society, 2014, 42(1):33‑37. (in Chinese) [百度学术]
乔光华. 粉煤灰掺量对塑性混凝土静态强度特性的影响分析[J]. 混凝土, 2022 (5):108‑111, 116. [百度学术]
QIAO Guanghua. Influence of fly ash content on static strength characteristics of plastic concrete [J]. Concrete, 2022 (5):108‑111, 116.(in Chinese) [百度学术]
SHI Y, CHEN X, LI J Z, et al. Micro‑macro properties of plastic concrete anti‑seepage wall materials mixed with low‑liquid limit clay[J]. Advances in Mechanical Engineering, 2019, 11(5):8132‑8140 [百度学术]
张胜强, 杨磊, 李佳伟, 等. 掺石渣粉塑性混凝土配合比试验研究及应用[J]. 长江科学院院报, 2016, 33(5):116‑120. [百度学术]
ZHANG Shengqiang, YANG Lei, LI Jiawei, et al. Mix proportion design of plastic concrete mixed with stone ballast[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(5):116‑120. (in Chinese) [百度学术]
王协群, 鲍晓煜. 单掺黏土的塑性混凝土配合比试验研究[J]. 水力发电学报, 2019, 38(9):37‑43. [百度学术]
WANG Xiequn, BAO Xiaoyu. Experimental study on mix proportion of plastic concrete with clay [J]. Journal of Hydroelectric Engineering, 2019, 38(9):37‑43. (in Chinese) [百度学术]
田雷, 林宁, 周虎,等. 膨润土掺量对自密实混凝土强度及变形能力的影响[J]. 工业建筑, 2019, 49(11):108‑112. [百度学术]
TIAN Lei, LIN Ning, ZHOU Hu, et al. Effects of bentonite content on strength and deformability of self compacting concrete[J]. Industrial Construction, 2019, 49(11):108‑112. (in Chinese) [百度学术]
ADEBOJE A O, KUPOLATI W K, SADIKU E R, et al. Experimental investigation of modified bentonite clay‑crumb rubber concrete[J]. Construction and Building Materials, 2020, 233:117187. [百度学术]
LIU M L, HU Y, LAI Z Y, et al. Influence of various bentonites on the mechanical properties and impermeability of cement mortars[J]. Construction and Building Materials, 2020, 241:118015. [百度学术]
GUPT C B, BORDOLOI S, SAHOO R K, et al. Mechanical performance and micro‑structure of bentonite‑fly ash and bentonite‑sand mixes for landfill liner application[J]. Journal of Cleaner Production, 2021, 292:126033. [百度学术]
李尚辉, 饶运章, 许威, 等. 某铜矿高硫尾砂充填体膨胀特性试验研究[J]. 矿业研究与开发, 2018, 38(3):83‑87. [百度学术]
LI Shanghui, RAO Yunzhang, XU Wei, et al. Experimental study on the expansion characteristics of filling body with high sulfur tailings in a copper mine[J]. Mining Research and Development, 2018, 38(3):83‑87. (in Chinese) [百度学术]
ISAIA G C, GASTALDINI A L G, MORAES R . Physical and pozzolanic action of mineral additions on the mechanical strength of high‑performance concrete[J]. Cement and Concrete Composites, 2003, 25(1):69‑76. [百度学术]
宋帅奇, 陈颖杰, 韩杨. 水泥窑灰塑性混凝土防渗墙材料基本性能试验研究[J]. 水力发电学报, 2018, 37(7):58‑64. [百度学术]
SONG Shuaiqi, CHEN Yingjie, HAN Yang. Experimental study on basic properties of cutoff wall plastic concrete with cement kiln dust[J]. Journal of Hydroelectric Engineering, 2018, 37(7):58‑64. (in Chinese) [百度学术]
PISHEH Y P, HOSSEINI M M M. Experimental investigation of mechanical behavior of plastic concrete in cutoff walls[J]. Journal of Materials in Civil Engineering, 2019, 31(1):04018355. [百度学术]
王泽东, 周盛涛, 方文,等. 膨润土改性水泥土力学特性试验研究[J]. 硅酸盐通报, 2019, 38(10):3287‑3292. [百度学术]
WANG Zedong, ZHOU Shengtao, FANG Wen, et al. Experimental study on mechanical properties of cement soil modified by bentonite[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(10):3287‑3292. (in Chinese) [百度学术]
丁国庆, 蒋林华, 储洪强, 等. 膨润土种类及掺量对塑性混凝土性能的影响[J]. 水利水电科技进展, 2011, 31(2):34‑37. [百度学术]
DING Guoqing, JIANG Linhua, CHU Hongqiang, et al. Influences of types and dosage of bentonite on propertiesof plastic concrete[J]. Advances in Science and Technology of Water Resources, 2011, 31(2):34‑37. (in Chinese) [百度学术]