摘要
制备了一种无烟废旧胶粉改性沥青,研究了抑烟剂掺量对改性沥青烟气释放量及性能的影响,分析了抑烟剂的作用机理.结果表明:当抑烟剂掺量为1.0%时,改性沥青的烟气释放量由700 mg/kg降到60 mg/kg,针入度、软化点及延度变化较小,老化性能得到了改善;抑烟剂抑制了废旧胶粉的降解,使得改性沥青的初始分解温度升高,残余质量增大,热稳定性得到了提升.
随着道路使用年限的增长以及使用环境的不断恶化,路面养护用高性能沥青的需求量急剧增
轮胎橡胶的主要成分为硫化高分子聚合物,与沥青的相容性较差.尤其在高温条件下,含硫烟气和挥发性有机化合物容易逸
本文以辽河9
首先,将200 g的基质沥青加热至流动,按比例加入废旧胶粉,在3 000~4 000 r/min转速下剪切120 min,发育120 min;然后,加入自制抑烟剂,继续搅拌30 min后得到加入自制抑烟剂的胶粉改性沥青(SMA),备用.
采用失重法测量沥青的烟气释放量.
参考废旧胶粉改性道路沥青的生产工艺,采用失重法,模拟道路沥青拌和温度200 ℃来研究抑烟剂掺量对沥青烟气释放量的影响,结果见

图1 抑烟剂掺量对改性沥青烟气释放量的影响
Fig.1 Effect of smoke suppressant dosage on smoke emission of modified asphalt
(1)未加抑烟剂时,改性沥青的烟气释放量为700 mg/kg;当抑烟剂掺量为1.0%时,改性沥青的烟气释放量急剧下降到60 mg/kg,下降了91%.这是因为在200 ℃时基质沥青中的轻质组分会以沥青烟气的形式挥发,而氮化碳的层状结构将其吸附,降低了烟气的释放量.同时,废旧橡胶在200 ℃下会与基质沥青发生溶胀降解反应,这时氮化碳会进入或附着在胶粉颗粒表面,吸附体系内的轻质组分,抑制组分交换,从而抑制胶粉过度降解生成小分子颗粒并最终释放到空气中形成烟气.
(2)继续增大抑烟剂的掺量,改性沥青的烟气释放量变化较小.主要是由于当抑烟剂掺量低于1.0%时,抑烟剂中的氮化碳对沥青中轻组分的吸附有可能不充分.但是当抑烟剂掺量过多时,吸附达到饱和,并有可能产生脱附.同时,抑烟剂与沥青之间密度的差异较大,容易发生离析.因此,抑烟剂的最佳掺量为1.0%.
抑烟剂在有效抑制废旧胶粉改性沥青烟气释放的同时,还应使改性沥青的性能符合改性道路沥青的要求.试验研究了抑烟剂掺量对改性沥青针入度、软化点、延度及老化性能的影响,结果见图

图2 抑烟剂掺量对改性沥青针入度的影响
Fig.2 Effect of smoke suppressant dosage on penetration of modified asphalt

图3 抑烟剂掺量对改性沥青软化点的影响
Fig.3 Effect of smoke suppressant dosage on softening point of modified asphalt

图4 抑烟剂掺量对改性沥青延度的影响
Fig.4 Effect of smoke suppressant dosage on ductility of modified asphalt
Type | w(waste rubber powder)/% | w(smoke suppressant)/% | 25 ℃ penetration ratio/% | Softening point increment/℃ | 5 ℃ ductility retention/% | Mass loss/g | Softening point difference/℃ |
---|---|---|---|---|---|---|---|
MA | 20.0 | 60.11 | 4.9 | 50.6 | 1.82 | 2.5 | |
SMA | 20.0 | 1.0 | 60.20 | 5.0 | 49.0 | 0.80 | 2.2 |
废旧胶粉改性沥青的老化主要分为2部
废旧胶粉改性沥青的烟气来源一是沥青在高温作用下轻质组分的挥发,二是废旧胶粉在高温作用下进一步脱硫降解产物的挥

图5 加入抑烟剂前后改性沥青的四组分
Fig.5 Four components of modified asphalt before and after adding smoke suppressant
(1)废旧胶粉改性沥青中饱和分和芳香分的质量分数为45.5%,几乎达到了改性沥青总量的一半.由于轻质组分的沸点小于沥青质和胶质,当改性沥青被加热时,其中的轻质组分会以沥青烟气的形式挥
(2)加入抑烟剂后改性沥青中饱和分和芳香分的质量分数为56.22%.这是由于石墨相氮化碳特有的层状结
试验采用抽提器对改性沥青中的未溶解橡胶粉进行提
Sample | Mass of waste rubber powder modified asphalt/g | Mass of waste rubber powder modified asphalt soluble in toluene/g | Mass of undissolved rubber powder/g |
---|---|---|---|
MA | 1.998 2 | 1.889 3 | 0.108 9 |
SMA | 1.985 7 | 1.784 5 | 0.201 2 |

图6 废旧胶粉的SEM图像
Fig.6 SEM images of waste rubber powder
(1)未与沥青作用的胶粉结构复杂立体,表面凹凸不平,形状错落有致,多孔且具有层状结构;与沥青作用后的胶粉表面光滑平整,孔洞及层状结构消失,上下起伏较小,如同一个坚固的整体.胶粉形貌的改变主要是因为胶粉与沥青作用,发生了脱硫降解,大分子断裂生成小分子链段插进了沥青内部,造成胶粉内部网状结构的破坏和表面结构的疏松.
(2)加入抑烟剂后洗脱出的胶粉表面结构更加立体,表面结构在一定程度上遭到了破坏,但大体上还是复杂多孔的多层结构.可能是抑烟剂中的氮化碳具有吸附作用,减缓了沥青组分的扩散,使得轻组分的运动能力受阻,防止了胶粉的过度降解、胶粉团聚或沥青老化使改性沥青性质变坏并向空气中挥发有毒烟气.

图7 胶粉的FTIR图谱
Fig.7 FTIR spectra of rubber powder
(1)对于废旧胶粉来说,3 700~3 440 c
(2)对于洗脱出的废旧胶粉来说,在3 440、1 640 c
(3)加入抑烟剂后的洗脱胶粉在3 440、1 640 c

图8 加入抑烟剂前后改性沥青的DSC‑TGA曲线
Fig.8 DSC‑TGA curves of modified asphalt before and after adding smoke suppressant
无烟废旧胶粉改性沥青的性能见
Aging status | Index | Test result | SBR(Ⅱ-C) |
---|---|---|---|
Before RTFOT | Penetration(25 ℃)/(0.1 mm) | 55.0 | 50-60 |
Softening point/℃ | 63.5 | 55-65 | |
Ductility(5 ℃)/cm | 43.8 | ≥40 | |
After RTFOT | Mass loss/g | 0.8 | ≤1.0 |
Penetration ratio/% | 60.2 | >55 | |
Ductility(5 ℃)/cm | 32.0 | >20 |
(1)当自制抑烟剂的掺量为1.0%时,改性沥青的烟气释放量降低了91%.抑烟剂掺量对改性沥青的针入度、软化点及延度影响较小,石墨相氮化碳的层状结构可以将轻质组分吸附,抑制其挥发以及向重质组分的转变,改善了沥青的抗老化性能.
(2)加入1.0%的自制抑烟剂后,残余胶粉的质量增加了将近1倍,胶粉的降解程度显著降低,抑制了胶粉受热降解向空气中释放有毒烟气.
(3)加入抑烟剂后,改性沥青的初始分解温度升高并形成了更稳定的网络结构,热稳定性得到提升.无烟废旧胶粉改性沥青的各项性能均满足SBR(Ⅱ-C)的技术要求.
参考文献
窦国涛.新型环保改性沥青在路面施工中的应用技术[J].山西建筑,2022,48(10):121‑123. [百度学术]
DOU Guotao. Application technology of new environment‑friendly modified asphalt in pavement construction[J]. Shanxi Architecture, 2022, 48(10):121‑123. (in Chinese) [百度学术]
张广泰,李悦,陈柳灼,等.废机油活化废旧轿车轮胎胶粉改性沥青的流变性能[J]. 建筑材料学报, 2018, 21(2):320‑326. [百度学术]
ZHANG Guangtai, LI Yue, CHEN Liuzhuo, et al. Rheological properties of waste engine oil activated waste car tire crumb modified asphalt[J]. Journal of Building Materials, 2018, 21(2):320‑326. (in Chinese) [百度学术]
姚晓光,胡水根,张昊.橡胶改性沥青制备工艺优化[J].淮阴工学院学报,2018,27(3):42‑46. [百度学术]
YAO Xiaoguang, HU Shuigen, ZHANG Hao. Optimization of the preparation process of rubber modified asphalt[J]. Journal of Huaiyin Institute of Technology, 2018,27(3):42‑46. (in Chinese) [百度学术]
李文勇,邓小峰,李敏. 橡胶制品加工业职业危害现状分析[J]. 职业与健康, 2008, 24(12):1205‑1207. [百度学术]
LI Wenyong, DENG Xiaofeng, LI Min. Analysis on the current situation of occupational hazards in rubber products processing industry[J]. Occupational and Health, 2008, 24(12):1205‑1207. (in Chinese) [百度学术]
BOFFETTA P, BURSTYN I, PARTANEN T, et al. Cancer mortality among European asphalt workers:An international epidemiological study. II. Exposure to bitumen fume and other agents[J]. American Journal of Industrial Medicine, 2003, 43(1):28‑39. [百度学术]
DONG Z J, ZHOU T, LUAN H, et al. Composite modification mechanism of blended bio‑asphalt combining styrene‑butadiene‑styrene with crumb rubber:A sustainable and environmental‑friendly solution for wastes[J]. Journal of Cleaner Production, 2019, 214:593‑605. [百度学术]
KORDOGHLI S, PARASCHIV M, TAZEROUT M, et al. Waste tyres pyrolysis:Managing the environmental hazards of scrap tyres[C]//6th International Renewable Energy Congress. Sousse:IEEE, 2015:1‑6. [百度学术]
MO S C, WANG Y H, XIONG F, et al. Effects of asphalt source and mixing temperature on the generated asphalt fumes[J]. Journal of Hazardous Materials, 2019, 371:342‑351. [百度学术]
GONG J, LIU Y, WANG Q J, et al. Performance evaluation of warm mix asphalt additive modified epoxy asphalt rubbers[J]. Construction and Building Materials, 2019, 204:288‑295. [百度学术]
徐文龙. 介孔石墨相氮化碳的制备和光催化特性研究[D]. 哈尔滨:哈尔滨工业大学, 2019. [百度学术]
XU Wenlong. Preparation and photocatalytic properties of mesoporous graphite phase carbon nitride[D]. Harbin:Harbin University of Technology, 2019. (in Chinese) [百度学术]
崔亚楠,周军,赵琳. 热老化下沥青胶浆微观结构及自愈合性能评价[J]. 建筑材料学报, 2021, 24(6):1271‑1279. [百度学术]
CUI Yanan, ZHOU Jun, ZHAO Lin. Evaluation of microstructure and self‑healing performance of asphalt mortar under thermal aging[J]. Journal of Building Materials, 2021, 24(6):1271‑1279. (in Chinese) [百度学术]
曾祥鑫.橡胶沥青老化机理及其再生性能研究[D].南宁:广西大学,2015. [百度学术]
ZENG Xiangxin. Research on aging mechanism and regeneration performance of rubber asphalt[D]. Nanning:Guangxi University, 2015. (in Chinese) [百度学术]
刘莹.沥青烟气主动抑制技术发展现状[J].石油化工安全环保技术,2020,36(3):48‑52. [百度学术]
LIU Ying. Development status of active asphalt smoke suppression technology[J]. Petrochemical Safety and Environmental Protection Technology, 2020, 36(3):48‑52. (in Chinese) [百度学术]
CAO L P, YANG C, LI A, et al. Flue gas composition of waste rubber modified asphalt(WRMA) and effect of deodorants on hazardous constituents and WRMA[J]. Journal of Hazardous Materials, 2020, 403:123814. [百度学术]
WANG M, LI P, NIAN T F, et al. An overview of studies on the hazards, component analysis and suppression of fumes in asphalt and asphalt mixtures[J]. Construction and Building Materials, 2021, 289:123185. [百度学术]
才洪美,刘洋,梅顺平.沥青烟产生机理研究[J].石油沥青, 2015, 29(5):49‑52. [百度学术]
CAI Hongmei, LIU Yang, MEI Shunping. Study on the generation mechanism of asphalt smoke[J]. Petroleum Asphalt, 2015, 29(5):49‑52. (in Chinese) [百度学术]
王俐栋.环保型抑烟沥青及混合料性能研究[D]. 重庆:重庆交通大学, 2013. [百度学术]
WANG Lidong. Study on performance of environment‑friendly smoke suppression asphalt and mixture[D]. Chongqing:Chongqing Jiaotong University, 2013. (in Chinese) [百度学术]
李明,李雪飞,李秀艳,等. 具有高催化和吸附活性的片层状石墨相氮化碳的制备与表征[J]. 吉林师范大学学报(自然科学版), 2013, 34(4):12‑14. [百度学术]
LI Ming, LI Xuefei, LI Xiuyan, et al. Preparation and characterization of lamellar graphite phase carbon nitride with high catalytic and adsorption activity [J]. Journal of Jilin Normal University(Natural Science), 2013, 34(4):12‑14. (in Chinese) [百度学术]
丁伟涛,张小英,徐传杰,等.橡胶粉的溶解度对改性沥青性质的影响[J]. 石油沥青, 2007, 21(5):29‑31. [百度学术]
DING Weitao, ZHANG Xiaoying, XU Chuanjie, et al. The influence of the solubility of rubber powder on the properties of modified asphalt[J]. Petroleum Asphalt, 2007, 21(5):29‑31. (in Chinese) [百度学术]
徐光霁,范剑伟,马涛,等.高掺量废胎胶粉改性沥青性能研究[J]. 材料导报, 2022, 36(16):5‑12. [百度学术]
XU Guangji, FAN Jianwei, MA Tao, et al. Study on the properties of asphalt modified with high content of waste tire rubber powder[J]. Materials Reports, 2022, 36(16):5‑12. (in Chinese) [百度学术]
刘丹,董明洁.基于性能指标的废胶粉改性沥青改性机理研究[J]. 交通科技, 2015, 22(4):105‑107. [百度学术]
LIU Dan, DONG Mingjie. Study on the modification mechanism of waste rubber powder modified asphalt based on performance indicators[J]. Transportation Science and Technology, 2015, 22(4):105‑107. (in Chinese) [百度学术]
蔡斌,王佳,相宏伟,等. 超高掺量胶粉改性沥青性能评价及机理研究[J]. 公路交通技, 2022, 39(9):16‑22, 109. [百度学术]
CAI Bin, WANG Jia, XIANG Hongwei, et al. Performance evaluation and mechanism study of ultra‑high content crumb rubber modified asphalt[J]. Highway Traffic Science and Technology, 2022, 39(9):16‑22, 109. (in Chinese) [百度学术]
金鑫,郭乃胜,孙思威,等. 伊朗岩沥青改性沥青的微观特性及性能[J]. 建筑材料学报, 2021, 24(6):1265‑1270. [百度学术]
JIN Xin, GUO Naisheng, SUN Siwei, et al. Micro characteristics and properties of Iran rock asphalt modified asphalt[J]. Journal of Building Materials, 2021, 24(6):1265‑1270. (in Chinese) [百度学术]