摘要
层板销接木(DLT)是仅由木销和层板组成的一种无胶无钉、近似全实木的工程木产品,可用于制作梁、墙体和楼板,具有用材经济、绿色低碳和预制化程度高等特点. 从构造和分类两方面对DLT进行简要概述,系统梳理了近些年DLT在木销、木销节点及构件方面的性能研究成果,包括木销-层板销槽承压性能、木销节点抗剪性能、DLT木梁抗弯性能及DLT板振动特性等. 在此基础上,介绍了DLT在性能研究中存在的不足,并提出了DLT研究亟需解决的关键问题.
随着全球环境资源问题的凸显,中国推出了“力争2030年前实现碳达峰,2060年前实现碳中和”的“3060”战略目标,绿色低碳发展越来越成为主流.而建筑行业,尤其是建筑材料在能源消耗和废弃物排放方面对环境产生较大程度的负面影响.因此,建筑材料的低碳发展和绿色转型已经成为实现双碳目标的关键之一.
木材具有绿色节能、资源可再生等优点,是一种具有固碳能力的建材,在可持续发展的环境下具有显著优势. 此外,城市人口密度持续增长推动了多高层建筑的快速发
层板销接木(dowel laminated timber,DLT)是层板通过木销连接组合而成的一种结构用工程木产品. 此概念最早在20世纪70年代提出,近些年由于石材、钢材等资源减少,以及当前低碳政策的推广,DLT得到较多研究和应用.一方面,DLT基本属于全实木产品,除了在层板接长时使用少量胶黏剂外,层板和木销均采用木材;另一方面,DLT板材可以根据使用目标进行定制,预制化程度较高. DLT具有绿色节能、可持续性等优势,其结构简单,构造灵活,加工高效,可应用范围广泛.
基于此,本文首先简要概述了DLT的基本构造和分类;然后,系统梳理了DLT在木销、木销节点及构件方面的性能研究成果,包括木销力学性能、木销-层板销槽承压性能、木销节点抗剪性能、DLT木梁抗弯性能、DLT板抗弯性能和振动特性;最后,介绍了DLT在性能研究中存在的不足,同时提出了DLT研究中亟需解决的关键问题.
DLT是一种将层板宽面通过侧面拼接、层板组合采用销连接的工程木产品,示意图见

图1 层板销接木
Fig.1 Dowel laminated timber
Object | Method | Before modification | After modification | ||||
---|---|---|---|---|---|---|---|
ρ/(g·c | σm/MPa | E/GPa | ρ/(g·c | σm/MPa | E/GPa | ||
Populus euramerican |
Hot‑humidity compressio | 0.478 | 57.7 | 5.4 | 0.738 | 126.0 | 10.8 |
Cunninghamia lanceolat |
Hot compressio | 0.362 | 74.3 | 8.2 | 0.692 | 137.0 | 20.7 |
Picea sitchensis ca |
Hot compressio | 0.458 | 90.0 | 14.0 | 0.606-0.800 | 96.0-115.0 | 25.0-31.0 |
Note: 1: ①The compressed wood was first softened by steam at 130 ℃ for 40 to 80 min. Then the fixed compression molding process, control temperature of 100 ℃, unit pressure 5 MPa, and compression rate of 50%; Finally, the heat treatment was carried out at 180 ℃, maintained for 40 min, and then forced cooling. ②The optimal process conditions were the compression rate controlled at 50%-60%, compression time at 20-30 min, and hot pressing temperature at 180-200 ℃. ③The compression treatment was first soaked in water at 20 ℃ for 2 days. Then the fixed compression molding process, control temperature 180 ℃, compression rate of 33%-67%.2: ρ is the density; σm is the bending strength; E is the flexural elastic modulus.
DLT加工过程中,在木销插入层板之前,需要于层板相应位置预钻孔. 预钻孔直径主要由销连接工作原理和加工工艺决定,通常预钻孔直径比木销直径小0~1.5 m

图2 木销排列方式
Fig.2 Dowel arrangement

图3 V‑DLT或W‑DLT示意图
Fig.3 Sketch map of V‑DLT or W‑DLT
根据木材的生物质性和干缩湿胀性,DLT销连接系统的工作原理主要分为2种:一种是将木销固定在钻头上,在高速旋转条件下,利用木销中的非晶体聚合物(如木质素)或者涂抹在木销外层的热熔胶受热软化,对层板和木销进行连接组
在结构工程中,DLT常用做梁、墙体、楼面板和屋面板等.

图4 DLT基本形式
Fig.4 Basic form of DLT
DLT木销和层板的布置可根据用途和设计要求进行调整. 层板正交销接木(dowel cross laminated timber,DCLT)是一种DLT木销连接与层板正交组坯(cross laminated timber,CLT)相结合的结构材,示意图见

图5 层板正交销接木结构
Fig.5 Structure of dowel cross laminated timbe

图6 DLT‑混凝土结构
Fig.6 DLT‑concrete structur

图7 层板构造
Fig.7 Detail construction of laminate
木销连接是DLT的连接方式,对DLT物理力学性能有重要影响. 木销的抗剪强度、抗拔强度、抗弯强度,以及销槽承压强度是木销节点的重要评价指标. 以下将从木销力学性能、木销-层板销槽承压性能及木销节点抗剪性能3方面进行阐述.
木销作为层板连接的紧固件,主要承受剪力、弯矩和压力3种荷载. 木销双剪节点破坏模式见
(1) |
式中:f y,v为木销有效剪切强度,MPa;E为抗弯弹性模量,MPa;s为木销剪切跨度,mm;d为木销直径,mm.

图8 木销双剪节点破坏模式
Fig.8 Failure mode of double‑shear joint
由于节点破坏过程中木销主要有拔出和断裂2种破坏模
Resource | Dowel material | Laminate material | Insertion depth/mm | Dowel‑hole diameter ratio | Processing method | Insertion direction | Pullout resistance/kN | Pullout strength/MPa |
---|---|---|---|---|---|---|---|---|
Ref.[ | Beech | Beech | 30 | 10/8 | Rotary welding | ⊥ | 1.89 | |
Rotary welding | ∥ | 1.44 | ||||||
Ref.[ | Densified poplar | Pinus sylvestris glulam | 36 | 12/9 | Rotary welding | ∥ | 1.77 | |
72 | 2.59 | |||||||
Ref.[ | Bamboo | Beech | 20 | 10/10 | Gluing | ⊥ | 4.08 | |
10/9 | Rotary welding | ⊥ | 4.44 | |||||
Ref.[ | Densified poplar | Scots pine | 48 | 12/9 | Rotary welding | ∥ | 3.47 | |
Natural poplar | 0.39 | |||||||
Ref.[ | Bamboo | Beech | 38 | 10/7 | Rotary welding | ⊥ | 2.97 | |
10/9 | 3.38 |
Note: ∥—Parallel to the direction of wood grain; ⊥—Vertical to the wood grain direction.
针对木销抗弯性能的研究较少,主要作为材料参数,用于计算节点承载力. Ioana
欧洲屈服理论模式(European yield model,EYM)中有2种木销连接延性破坏模式,分别为层板销槽承压屈服(Ⅰm和Ⅰs)、木销和层板销槽承压同时屈服(Ⅲs和Ⅳ). 木销连接的力学性能主要受层板销槽承压强度与销钉的抗弯承载力影
研究发现,层板种类对木销-层板销槽承压性能有一定影响. Ioana
木销种类对木销-层板销槽承压性能的影响存在分歧. Ioana
当前,主要采用双剪试

图9 木销剪切试验示意图
Fig.9 Schematic map of wood dowel shear test
Jung
薛莹莹
研究发现,木销种类,层板种类、厚度和加工方式等对木销节点抗剪性能有重要影响.
E‑Houjeyri

图10 木销种类对节点抗剪性能影响
Fig.10 Effect of dowel types on shear properties of joint
研究表明,层板种类对节点抗剪性能有影

图11 层板种类对节点抗剪性能影响
Fig.11 Effect of laminate types on shear properties of joint
Dowel diameter/mm | Edge laminate thickness/mm | Core laminate thickness/mm | Initial stiffness/(kN·m | Shear bearing capacity/kN | Yield strength/kN |
---|---|---|---|---|---|
12 | 12 | 24 | 5.37 | 6.35 | 11.66 |
12 | 36 | 48 | 2.51 | 9.98 | 12.69 |
Note: The laminate of the specimen is glulam, and the dowel is densified poplar. All variables are consistent except the thickness of laminates.
目前针对DLT构件的力学性能研究主要是垂直DLT木梁抗弯性能、DLT板抗弯性能和振动特
Resource | Structural composition | Mechanical index (mean or range) | |||
---|---|---|---|---|---|
Flexural strength/MPa | Flexural rigidity/(kN· | Maximum deformation/mm | Ductility | ||
Ref.[ |
DLT:Oak laminate + compressed spruce dowel Glulam:Oak laminate | — | 6.97 | 105.71 | 4.53 |
— | 16.11 | 40.30 | 2.05 | ||
Ref.[ |
DLT:Scots pine laminate+ compressed Scots pine dowel Glulam:Scots pine laminate | 19.3-30.9 | — | — | 1.5-4.1 |
54.0-73.2 | — | — | 1.2-2.0 | ||
Ref.[ |
DCLT:SPF laminate+ compressed poplar dowel Glulam:SPF laminate | 23.00 | 3.72 | 85.00 | — |
45.06 | 19.82 | 35.00 | — |
同时,研究发

图12 垂直DLT木梁破坏模式
Fig.12 Failure mode of DLT‑vertical beam
目前,垂直DLT木梁抗弯性能研究主要是以木销的相关性能为变量,探究木梁的初始刚度、抗弯模量、抗弯承载力和变形等. 研究表明,木销间距(数量)、直径及种类、插入角度对垂直DLT木梁抗弯性能均有重要影响.
O’loinsigh

图13 木销间距(数量)对垂直DLT木梁力学性能影响
Fig.13 Effect of dowel spacing on flexural performance of DLT‑vertical beam
Sotayo
上述研究表明,木销数量的增多使得结构整体性得到了提高. 因此,减小木销间距或增加木销数量,一定程度上可以提高垂直DLT木梁的抗弯强度和刚度.
Sotayo
也有学者采用回收的工程木制作木销,来连接层板形成垂直DLT木梁,并对该木梁进行了抗弯性能研

图14 回收工程木制木销对垂直DLT木梁力学性能影响
Fig.14 Effect of recycled dowel on flexural performance of DLT‑vertical beam
关于木销插入角度对垂直DLT木梁抗弯性能影响的研究结果存在一定分歧. Sotayo
以上2个研究结果出现分歧的原因可能是垂直DLT木梁的其他变量数值未统一,在不同情况下,影响垂直DLT木梁力学性能的关键变量会发生变化. 因此,后续需要在保证其余变量尽可能相同的情况下,进一步确认木销插入角度及其与其他变量之间的相互关系对垂直DLT木梁抗弯性能的影响.
当前,针对DLT板性能研究相对较少,主要是探究DCLT板抗弯模量、抗弯刚度等抗弯性能,以及自振频率、阻尼等振动特性.
研究发现,DCLT板与垂直DLT木梁抗弯性能相似,均具有优良的延性特性和抗震性能. Sotayo

图15 DCLT与CLT板抗弯性能对比
Fig.15 Comparison of flexural performance between DCLT and CLT plate

图16 层板数量及种类对DCLT板抗弯性能的影响
Fig.16 Effect of number and type of laminates on flexural performance of DCLT plates
木销直径似乎对DCLT板抗弯性能存在影响. 木销直径16 mm的DCLT抗弯模量和抗弯强度均优于木销直径10 mm的DCL

图17 层板拼接方式对DCLT板抗弯性能影响
Fig.17 Effect of laminate splicing method on flexural performance of DCLT plat
一系列的研究成果证明DLT作为结构用材应用于建筑中的可行性. 通过对DLT构造分类的介绍及研究现状的阐述,得到相关结论:(1)构造方面,仅由木销和层板组成的DLT是一种近似全实木的工程木产品,具有绿色节能、可持续性的优势,且其结构简单,构造灵活,可应用范围广泛.(2)性能方面,木销节点、垂直DLT木梁和DCLT板均具有优良的延性特性和抗震性能;虽然其在强度、刚度性能上仍与钢销节点、胶合木梁及CLT板存在一定差距,但可以通过调整相关变量来增强节点及构件性能.
为提高DLT的力学性能,扩大其工程应用,对DLT进一步的研究内容提出以下建议:
(1)在材料方面,增加国产木材的应用,降低国内工程木产品对国外进口材的依赖. 目前作为DLT的主体材料——层板,仍主要采用国外进口板材,如何有效利用国产材发展DLT等工程木产品是如今需要深入研究的课题. 为满足DLT层板力学性能的要求,需要进一步研究国产材改性处理方式,同时尽快建立国产材重要材性数据库和力学性能评估体系.
(2)在节点方面,探究关键变量,提高木销节点抗剪性能. 当前木销连接机理仍不清晰,因此需要进一步探究更多变量对木销节点抗剪性能的影响,比如木销的插入角度等. 此外,需要建立不同破坏模式下,适用于木销节点的抗剪承载力公式,完善木销节点计算规范.
(3)在构件方面,合理应用层板,提高DLT构件力学性能. 垂直DLT木梁和DCLT板在抗弯强度和刚度上仍与胶合木梁和CLT板存在较大差距. 因此,需要进一步考虑层板的选择,比如不同树种或高性能国产木基结构板材等,通过合理的组合方式来提高DLT的抗弯强度和抗弯刚度. 另外,有必要对DLT进行长期性能试验,提供DLT的全生命周期评价数据.
参考文献
何敏娟, 孙晓峰, 李征. 多高层木结构抗震性能研究与设计方法综述[J]. 建筑结构, 2020, 50 (5):1‑6. [百度学术]
HE Minjuan, SUN Xiaofeng, LI Zheng. Seismic performance study and design method summary for multi‑storey timber structures[J]. Building Structure, 2020, 50 (5):1‑6. (in Chinese) [百度学术]
周海宾, 孙华林, 张俊珍, 等. 结构用胶合木性能若干影响因素[J]. 建筑材料学报, 2014, 17(3):553‑558. [百度学术]
ZHOU Haibin, SUN Hualin, ZHANG Junzhen, et al. Factors influencing strength properties of structural glulam[J]. Journal of Building Materials, 2014, 17(3):553‑558. (in Chinese) [百度学术]
周海宾, 刘晓娜, 韩刘杨, 等. 胶黏剂和指接接头对胶合木性能的影响[J]. 建筑材料学报, 2017, 20(5):752‑757. [百度学术]
ZHOU Haibin, LIU Xiaona, HAN Liuyang, et al. Influence of adhesive type and finger joint on properties of glulam[J]. Journal of Building Materials, 2017, 20(5):752‑757. (in Chinese) [百度学术]
何敏娟, 冯威. 层板钉接木(NLT)在竖向荷载作用下的承载性能研究综述[J]. 建筑技术, 2020, 51(3):311‑315. [百度学术]
HE Minjuan, FENG Wei. State‑of‑the‑art of nail‑laminated timber under vertical load[J]. Architecture Technology, 2020, 51(3):311‑315. (in Chinese) [百度学术]
茅鸣, 童科挺, 张家亮, 等. 长期荷载作用对钢-竹组合梁力学性能影响[J]. 建筑材料学报, 2021, 24(6):1280‑1290. [百度学术]
MAO Ming, TONG Keting, ZHANG Jialiang, et al. Effect of long‑term load on mechanical properties of steel‑bamboo combination beams [J]. Journal of Building Materials, 2021, 24(6):1280‑1290. (in Chinese) [百度学术]
张杰, 黄斐, 刘文地, 等. 改性竹纤维加气混凝土的制备与界面特性[J]. 建筑材料学报, 2022, 25(7):686‑692. [百度学术]
ZHANG Jie, HUANG Fei, LIU Wendi, et al. Preparation and interfacial characteristics of modified bamboo fibers reinforced autoclaved aerated concrete[J]. Journal of Building Materials, 2022, 25(7):686‑692. (in Chinese) [百度学术]
贺勤, 龚蒙. 两种建筑用重型无胶木基工程结构材介绍[J]. 国际木业, 2020, 50(5):15‑17. [百度学术]
HE Qin, GONG Meng. Introduction to two gum free mass timber products for construction[J]. International Wood Industry, 2020, 50(5):15‑17. (in Chinese) [百度学术]
Dowel laminated timber:Design and profile guide[Z].Abbotsford:StructureCraft, 2021. [百度学术]
魏新莉, 向仕龙, 何华. 水热预处理对杨木压缩木物理力学性能的影响[J]. 木材工业, 2004(3):20‑22. [百度学术]
WEI Xinli, XIANG Shilong, HE Hua. Effect of hydrothermal treatment on physical and mechanical properties of compressed poplar wood[J]. China Wood Industry, 2004(3):20‑22. (in Chinese) [百度学术]
陈瑞英, 魏萍, 刘景宏. 杉木间伐材压缩密化利用的研究[J]. 应用生态学报, 2005,16(12):2306‑2310. [百度学术]
CHEN Ruiying, WEI Ping, LIU Jinghong. Utilization of compressed Chinese fir thinning wood[J]. Chinese Journal of Applied Ecology, 2005,16(12):2306‑2310. (in Chinese) [百度学术]
YOSHIHARA H, TUNEMATSU S. Bending and shear properties of compressed sitka spruce[J]. Wood Science and Technology, 2007, 41(2):117‑131. [百度学术]
SOTAYO A, AU S K, GUAN Z. Finite element modelling and testing of timber laminated beams fastened with compressed wood dowels[C]//World Conference on Timber Engineering 2018. Seoul:Mondial Congress & Events, 2018. [百度学术]
李桥, 宋焕, 王志强. 竹/木销连接组合木梁抗弯性能研究[J]. 西北林学院学报, 2020, 35(2):218‑222. [百度学术]
LI Qiao, SONG Huan, WANG Zhiqiang. Bending performance of timber composite beam fastened with bamboo/wood dowels[J]. Journal of Northwest Forestry University, 2020, 35(2):218‑222. (in Chinese) [百度学术]
贾贺然, 高颖, 孟鑫淼, 等. 木榫旋转焊接节点剪切试验研究与理论分析[J]. 林业工程学报, 2022, 7(1):38‑44. [百度学术]
JIA Heran, GAO Ying, MENG Xinmiao, et al. Shear tests and theoretical analysis of wood‑dowel rotation welding joints[J]. Journal of Forestry Engineering, 2022, 7(1):38‑44. (in Chinese) [百度学术]
O’LOINSIGH C, OUDJENE M, AIT A H, et al. Experimental study of timber‑to‑timber composite beam using welded‑through wood dowels[J]. Construction and Building Materials, 2012, 36(11):245‑250. [百度学术]
O’LOINSIGH C, OUDJENE M, SHOTTON E, et al. Mechanical behaviour and 3D stress analysis of multi‑layered wooden beams made with welded‑through wood dowels[J]. Composite Structures, 2012, 94(2):313‑321. [百度学术]
MILCH J, TIPPNER J, BRABEC M, et al. Experimental testing and theoretical prediction of traditional dowel‑type connections in tension parallel to grain[J]. Engineering Structures, 2017, 152(12):180‑187. [百度学术]
PEREIRA M, SOHIER L, DESCAMPS T, et al. Doweled cross laminated timber:Experimental and analytical study[J]. Construction and Building Materials, 2021, 273(9):121820. [百度学术]
Parts catalogue system thoma Holz100[Z]. Amsterdam:Thoma, 2012. [百度学术]
Dowel laminated timber:Environmental product declaration[Z]. Abbotsford:StructureCraft, 2019. [百度学术]
European Committee for Standardization. Eurocode 5:Design of timber structures part 1‑1:General and rules for buildings:EN 1995‑1‑1—2004[S]. Brussels:European Committee for Standardization, 2004. [百度学术]
MILLER J F, SCHMIDT R J, BULLEIT W M. New yield model for wood dowel connections[J]. Journal of Structural Engineering, 2010, 136(10):1255‑1261. [百度学术]
OUDJENE M, TRAN V, KHELIFA M. Cyclic and monotonic responses of double shear single dowelled timber connections made of hardwood species:Experimental investigations[J]. Construction and Building Materials, 2017, 132(2):188‑195. [百度学术]
王必林. 压缩木销钉连接力学性能研究[D]. 大连:大连理工大学, 2020. [百度学术]
WANG Bilin. Study on mechanical behaviour of timber joints with compressed wood dowel[D]. Dalian:Dalian University of Technology, 2020. (in Chinese) [百度学术]
HAO J X, XU L, WU X F, et al. Analysis and modeling of the dowel connection in wood T type joint for optimal performance[J]. Composite Structures, 2020, 253(12):112754. [百度学术]
KANAZAWA F, PIZZI A, PROPERZI M, et al. Parameters influencing wood‑dowel welding by high‑speed rotation[J]. Journal of Adhesion Science and Technology, 2005, 19(12):1025‑1038. [百度学术]
刘恪. 压缩木销旋转摩擦焊接抗拔性能研究[D]. 大连:大连理工大学, 2019. [百度学术]
LIU Ke. Study on pullout resistance of compressed wooden dowel rotary friction welding[D]. Dalian:Dalian University of Technology, 2019. (in Chinese) [百度学术]
李素瑕, 张海洋, 程良松, 等. 毛竹销(钉)的高速旋转摩擦焊接性能研究[J]. 西北林学院学报, 2021, 36(4):225‑232,248. [百度学术]
LI Suxia, ZHANG Haiyang, CHENG Liangsong, et al. Bonding properties of bamboo dowel welded to wood with high‑speed rotation[J]. Journal of Northwest Forestry University, 2021, 36(4):225‑232,248. (in Chinese) [百度学术]
XU B H, LIU K, ZHAO Y H, et al. Pullout resistance of densified wood dowel welded by rotation friction[J]. Journal of Materials in Civil Engineering, 2022, 38(8):04022186. [百度学术]
杨鸿达, 王宁, 孟鑫淼, 等. 竹榫旋转焊接工艺参数及机理探究[J]. 北京林业大学学报, 2022, 44(2):141‑150. [百度学术]
YANG Hongda, WANG Ning, MENG Xinmiao, et al. Study on process parameters and mechanism of bamboo dowel rotation welding[J]. Journal of Beijing Forestry University, 2022, 44(2):141‑150. (in Chinese) [百度学术]
IOANA T, BÁRBARA P, JORGE M, et al. Experimental evaluation of dowel‑type timber joints with wooden dowels[J]. Structures and Buildings, 2020, 173(12):927‑938. [百度学术]
JOHANSEN K W. Theory of timber connections[J]. Publication of International Association for Bridge and Structural Engineering, 1949, 9:249‑262. [百度学术]
祝恩淳, 潘景龙, 周晓强, 等. 木结构螺栓连接试验研究及承载力设计值确定[J]. 建筑结构学报, 2016, 37(4):54‑63. [百度学术]
ZHU Enchun, PAN Jinglong, ZHOU Xiaoqiang, et al. Experiments of load‑carrying capacity of bolted connections in timber structures and determination of design value[J]. Journal of Building Structures, 2016, 37(4):54‑63. (in Chinese) [百度学术]
冯新, 肖宏彬, 陈伯望, 等. 木材横纹销槽承压强度研究[J]. 建筑材料学报,2023,26(6):644‑652. [百度学术]
FEN Xin, XIAO Hongbin, CHEN Bowang, et al. Research on embedment strength perpendicular to the wood grain[J]. Journal of Building Materials,2023,26(6):644‑652. (in Chinese) [百度学术]
郝丹, 王佳阳, 付帅, 等. 高湿环境下杨木单板层积材销槽的承压性能[J]. 森林与环境学报, 2020, 40(5):554‑560. [百度学术]
HAO Dan, WANG Jiayang, FU Shuai, et al. Dowel‑bearing capacity of poplar laminated veneer lumber in a high‑humidity environment[J]. Journal of Forest and Environment, 2020, 40(5):554‑560. (in Chinese) [百度学术]
唐红元, 马梦淋, 杨媛, 等. 正交胶合木销槽承压强度试验研究[J]. 建筑结构学报, 2022, 43(5):175‑184. [百度学术]
TANG Hongyuan, MA Menglin, YANG Yuan, et al. Experimental study on dowel bearing strength of cross‑laminated‑timber (CLT) panels[J]. Journal of Building Structures, 2022, 43(5):175‑184. (in Chinese) [百度学术]
JUNG K, KITAMORI A, KOMATSU K. Evaluation on structural performance of compressed wood as shear dowel[J]. Holzforchung, 2008, 62(4):461‑467. [百度学术]
薛莹莹, 朱旭东, 张雪雯, 等. 水青冈木-自攻螺钉复合榫连接节点单剪性能[J]. 木材科学与技术, 2022, 36(1):68‑74. [百度学术]
XUE Yingying, ZHU Xudong, ZHANG Xuewen, et al. Single shear performance of components connected by beech‑self‑tapping‑screw composite dowels[J]. Chinese Journal of Wood Science and Technology, 2022, 36(1):68‑74. (in Chinese) [百度学术]
E‑HOUJEYRI I, THIA V D, OUDJENE M, et al. Experimental investigations on adhesive free laminated oak timber beams and timber‑to‑timber joints assembled using thermo‑mechanically compressed wood dowels [J]. Construction and Building Materials, 2019, 222(10):288‑299. [百度学术]
XU B H, JIAO S Y, WANG B L, et al. Mechanical performance of timber‑to‑timber joints with densified wood dowels[J].Journal of Structural Engineering, 2022, 148(4):04022023. [百度学术]
SOTAYO A, BRADLEY D, BATHER M, et al. Review of state of the art dowel laminated timber members and densified wood materials as sustainable engineered wood products for construction and building applications[J]. Developments in the Built Environment, 2020, 1(2):100004. [百度学术]
SOTAYO A, DAN F B, BATHER M, et al. Development and structural behaviour of adhesive free laminated timber beams and cross laminated panels[J].Construction and Building Materials, 2020, 259(3):119821. [百度学术]
XU B H, ZHANG S D, ZHAO Y H, et al. Mechanical properties of adhesive‑free cross‑laminated timber [J]. Journal of Structural Engineering, 2022, 148(9):04022135. [百度学术]
BOUHALA L, FIORELLI D, MAKRADI A, et al. Advanced numerical investigation on adhesive free timber structures[J]. Composite Structures, 2020, 246:112389. [百度学术]
DERIKVAND M, HOSSEINZADEH S, FINK G. Mechanical properties of dowel laminated timber beams with connectors made of salvaged wooden materials[J].Journal of Architectural Engineering, 2021, 27 (4):04021035. [百度学术]
BUI T A,LARDEUR P,OUDJENE M, et al. Towards experimental and numerical assessment of the vibrational serviceability comfort of adhesive free laminated timber beams and CLT panels assembled using compressed wood dowels [J].Engineering Structures, 2020,216(8):1105836. [百度学术]
BUI T A, OUDJENE M, LARDEUR P, et al. Numerical modelling of the variability of the vibration frequencies of multi‑layered timber structures using the modal stability procedure [J]. Composite Structures, 2022, 285:115226. [百度学术]