摘要
为降低电化学修复对钢筋的氢脆作用,对比了恒电流和方波电流2种电场对钢筋混凝土构件进行电化学修复的效果.通过开路电位、线性极化、交流阻抗、拉伸试验及扫描电镜等方法对比分析两种电流施加方式对砂浆中钢筋耐蚀性和力学性能的影响.结果表明:相较于恒电流电化学修复,方波电流作用下的钢筋腐蚀电流密度更小,砂浆保护层电阻、钢筋钝化膜电阻及钢筋电荷转移电阻更大;方波电流电化学修复对砂浆保护层的修复效果更显著,增强了钢筋钝化性能,减小了钢筋腐蚀速率;方波电流还可降低电化学修复阴极极化对钢筋塑性的影响,减少钢筋氢脆风险.
钢筋混凝土因其耐久性良好、成本较低、原料广泛等优点,被广泛应用于海港码头建
混凝土结构的电化学修复方法是以钢筋作为阴极,混凝土表面外置惰性电极作为阳极,采用直流电源施加电场作用将氯离子迁出混凝土,从而增强混凝土结构耐久
水泥采用P·O 42.5普通硅酸盐水泥;钢筋为直径10 mm的Q235光圆钢筋;河砂采用细度模数为2.6的中砂,拌和水采用质量分数为3.5%的氯化钠水溶液.将钢筋切割为长度250 mm的试样,依次采用240#、400#、600#、800#、1000#水磨砂纸对其进行打磨直至表面光亮.在钢筋一端焊接铜线,并用K‑704有机硅密封胶对钢筋的两端进行封装;然后将钢筋埋置在尺寸为100 mm×100 mm×300 mm的砂浆中心,制成砂浆试件.砂浆水灰比(质量比)为0.65,灰砂比(质量比)为1∶3.制备好的砂浆试件在标准养护箱中养护28 d后,再采用中性硅酮密封胶对砂浆试件的4个侧面与1个顶面进行密封,只留底面进行电化学修复试验.所用电解液为含0.01 mol/L NaOH、1 mol/L三乙烯四胺(TETA,阻锈剂)的饱和Ca(OH)2溶液.辅助电极(counter electrode)为尺寸300 mm×200 mm×5 mm的石墨板.
辅助电极石墨板顶端打孔并与铜导线连接,将其连接部分用硅胶封装以防漏电.砂浆试件电化学修复试验的示意图如

图1 砂浆试件电化学修复试验示意图
Fig.1 Schematic diagram of electrochemical repair of mortar specimen
恒电流的电化学修复试验采用直流稳压电源设备提供恒电流;电流密度为3.00 mA/c
方波电流的电化学修复试验由脉冲电源设备提供,交替施加电流密度为3.00 mA/c
电化学测试时,钢筋为工作电极,饱和甘汞电极(SCE)为参比电极,石墨板为辅助电极,如
砂浆试件中钢筋在恒电流和方波电流电化学修复作用下的开路电位EOPC如

图2 恒电流和方波电流电化学修复作用下砂浆试件中钢筋的开路电位
Fig.2 Open circuit potential of reinforcements in mortars under constant and square wave currents
采用线性极化法分析了不同电场条件下砂浆试件中钢筋的极化电阻(Rp),并根据
icorr = B/Rp | (1) |
式中:B为常数,对于钝化状态的钢筋B取52 mV,对于活化状态的钢筋B取26 m
本文中制备砂浆试件的自来水中添加有3.5% NaCl,因此计算icorr时B取26 mV.计算得到的钢筋腐蚀电流密度结果如

图3 恒电流和方波电流电化学修复作用下砂浆试件中钢筋的腐蚀电流密度
Fig.3 Corrosion current density of reinforcements in mortars under constant and square wave currents
恒电流和方波电流电化学修复作用下砂浆试件中钢筋的交流阻抗(Nyquist图谱)如

图4 恒电流和方波电流电化学修复作用下砂浆试件中钢筋的Nyquist图谱
Fig.4 Nyquist plots of reinforcements in mortars under constant and square wave currents
由
用

图5 等效电路图
Fig.5 Equivalent circuit diagram
通过等效电路拟合得到恒电流和方波电流电化学修复作用下的砂浆保护层电阻Rcon、钢筋钝化膜电阻Rpf及钢筋电荷转移电阻Rct,结果如

图6 恒电流和方波电流电化学修复作用下砂浆试件中钢筋的交流阻抗拟合参数
Fig.6 EIS fitting parameters of reinforcements in mortars under constant and square wave currents
由

图7 未经电化学修复和经14个周期电化学修复后钢筋的应力-应变曲线
Fig.7 Stress‑strain curves of reinforcements without and with 14 times of electrochemical repair cycles
Current condition | Offset yield strength/MPa | Ultimate yield strength/MPa | Fracture energy ratio/% |
---|---|---|---|
Blank | 1 033.32 | 1 051.23 | 100.00 |
CE | 1 023.97 | 1 043.23 | 94.18 |
SE | 1 025.82 | 1 048.89 | 99.06 |

图8 砂浆试件中钢筋在恒电流和方波电流作用下电化学修复14个周期后的断口形貌
Fig.8 Fracture morphology of reinforcements in mortars under 14 times of constant and square wave electrochemical repair cycles
(1)砂浆试件中钢筋的腐蚀电流密度随着方波电流电化学修复周期的延长而下降.在经过4个周期的相同通电量电化学修复后,方波电流作用下钢筋腐蚀电流密度小于恒电流作用下,说明方波电流对钢筋修复作用更为显著.
(2)方波电流电化学修复作用下的砂浆保护层电阻、钢筋钝化膜电阻及钢筋电荷转移电阻均大于恒电流电化学修复作用下,说明方波电流的电化学修复对砂浆层的修复效果更显著,可提高钢筋钝化性能,减小钢筋腐蚀速率.
(3)恒电流和方波电流的电化学修复均导致钢筋条件屈服强度、极限屈服强度及断裂能比下降,并且恒电流作用下的下降趋势更为明显.2种电流的电化学修复后钢筋的断裂均以韧窝和准解理混合模式为主,其中恒电流作用下电化学修复钢筋断口表面解理面略大于方波电流作用下,表明恒电流引起的钢筋脆性增加更显著.因此,方波电流可降低电化学修复过程中阴极极化对钢筋塑性的影响,降低钢筋氢脆风险.
参考文献
WU T, LU X Y, CHEN Z, et al. Effect of alternating temperature on passivation characteristics of carbon steel in chloride‑free saturated Ca(OH)2 solution[J]. Corrosion Science, 2022, 198:110102. [百度学术]
FENG X G, YAN Q X, LU X Y, et al. Protection performance of the submerged sacrificial anode on the steel reinforcement in the conductive carbon fiber mortar column in splash zones of marine environments[J]. Corrosion Science, 2020, 174:108818. [百度学术]
冯兴国, 卢潇, 卢向雨, 等. 海水拌制珊瑚混凝土中不锈钢钢筋的锈蚀速率[J]. 建筑材料学报, 2021, 24(6):1322‑1327. [百度学术]
FENG Xingguo, LU Xiao, LU Xiangyu, et al. Corrosion rate of stainless steel rebar incoral concrete prepared with seawater[J]. Journal of Buliding Materials, 2021, 24(6):1322‑1327. (in Chinese) [百度学术]
冯兴国, 范琦琦, 杨洋, 等. 交变温度对细骨料珊瑚混凝土中钢筋耐腐蚀性能的影响[J].建筑材料学报, 2022, 25(5):525‑531. [百度学术]
FENG Xingguo, FAN Qiqi, YANG Yang, et al. Effect of alternating temperature on the corrosion performance of reinforcements in fine coral aggregate concrete[J]. Journal of Buliding Materials, 2022, 25(5):525‑531. (in Chinese) [百度学术]
金伟良, 陈佳芸, 毛金鸿, 等. 电化学修复对钢筋混凝土结构服役性能的作用效应[J]. 工程力学, 2016, 33(2):1‑10. [百度学术]
JIN Weiliang, CHEN Jiayun, MAO Jinhong, et al. The effect of electrochemical rehabilitation on service performance of reinforced concrete structures[J]. Engineering Mechanics, 2016, 33(2):1‑10. (in Chinese) [百度学术]
金伟良, 黄楠, 许晨, 等. 双向电渗对钢筋混凝土修复效果的试验研究——保护层阻锈剂、氯离子和总碱度的变化规律[J]. 浙江大学学报(工学版), 2014, 48(9):1586‑1594,1609. [百度学术]
JIN Weiliang, HUANG Nan, XU Chen, et al. Experimental research on effect of bidirectional electromigration rehabilitation on reinforced concrete—Concentration changes of inhibitor chloride ions and total alkalinity[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(9):1586‑1594,1609. (in Chinese) [百度学术]
XU C, JIN W L, HUANG N, et al. Bidirectional electromigration of a corrosion inhibitor in chloride contaminated concrete[J]. Magazine of Concrete Research, 2016, 68(9):450‑461. [百度学术]
元斐斌,金伟良,毛江鸿,等.基于双向电迁移的开裂混凝土除氯阻锈效果[J].浙江大学学报(工学版), 2019, 53(12):2317‑2324. [百度学术]
YUAN Feibin, JIN Weiliang, MAO Jianghong, et al.Effect of chloride removal and corrosion prevention for cracked concrete based on bi‑directional electro‑migration rehabilitation[J].Journal of Zhejiang University (Engineering Science), 2019, 53(12):2317‑2324. (in Chinese) [百度学术]
章思颖.应用于双向电渗技术的电迁移型阻锈剂的筛选[D].杭州:浙江大学,2012. [百度学术]
ZHANG Siying. A study of corrosion inhibitors for bidirectional electromigration rehabilitation[D]. Hangzhou:Zhejiang University, 2012. (in Chinese) [百度学术]
韦江雄,王新祥,郑靓,等.电除盐中析氢反应对钢筋‑混凝土黏结力的影响[J].武汉理工大学学报, 2009, 31(12):30‑34. [百度学术]
WEI Jiangxiong, WANG Xinxiang, ZHENG Liang, et al. Research on the hydrogen evolution reactions and its effect on the bond strength between reinforcement and concrete during eletrochemical chloride extraction[J]. Journal of Wuhan University of Technology, 2009, 31(12):30‑34.(in Chinese) [百度学术]
ZHANG J, JIN W L, MAO J H, et al. Deterioration of static mechanical properties of RC beams due to bond damage induced by electrochemical rehabilitation[J]. Construction and Building Materials, 2020, 237:45‑57. [百度学术]
MAO J H, JIN W L, ZHANG J, et al. Hydrogen embrittlement risk control of prestressed tendons during electro‑chemical rehabilitation based on bidirectional electro‑migration[J]. Construction and Building Materials, 2019, 213:582‑591. [百度学术]
ZHANG J, MAO J H, JIN W L, et al. Control of repair effect and hydrogen embrittlement risk by parameters optimization for BIEM[J]. Journal of Central South University, 2020, 27(8):2408‑2423. [百度学术]