摘要
通过暴雨堵塞试验,研究了新型再生透水混凝土(NRPC)的抗堵塞性能,分析了NRPC孔径(d)和堵塞物粒径(r)对NRPC堵塞结构、透水系数、堵塞深度和堵塞物通过率的影响.结果表明:NRPC形成的堵塞结构由孔径和堵塞物粒径的比值(d/r)共同决定,暴雨作用后的堵塞结构分为单颗粒表面堵塞、单颗粒孔道堵塞和多颗粒孔道堵塞;透水系数的降低主要发生在第1次暴雨堵塞循环中,小粒径堵塞物(r1.18 mm)形成的多颗粒堵塞是造成NRPC透水系数降低的主要原因;随着d/r的增加,多颗粒孔道堵塞结构的稳定性不断降低,当d r时,d/r越小,NRPC孔道堵塞的深度越大;随着d/r的增加,堵塞物的通过率不断增加,孔道的筛选作用降低.
近些年来中国暴雨内涝灾害频发,“逢雨必涝”已成为中国许多城市的真实写
一种具有垂直孔道的新型再生透水混凝土(NRPC)在英国得到了成功的运用.NRPC具有以下特点:通过引入垂直人工通道来实现渗透性,具有高强、高渗透性和耐堵塞性.NRPC在中国没有得到有效推广,主要原因是担心孔道堵塞后其使用寿命会大幅降低.众多学者对NRPC展开了研究:Kia
因此,本文利用自制的暴雨机器模拟暴雨,采用4种粒径范围的堵塞物,对4种孔径的NRPC暴雨堵塞循环后的堵塞结构、透水系数、堵塞深度和堵塞物通过率进行研究.此外,为了提高NRPC在可持续发展中的应用潜力,采用100%再生粗骨料代替天然骨料,为确定NRPC在透水路面材料中的应用提供一定的技术支撑和理论指导.
水泥为江苏扬子水泥厂生产的P∙O 52.5级水泥;常州热电厂生产的Ⅱ级粉煤灰(FA)和硅灰(SF),表观密度分别为2 500 kg/
r/mm | CM0.60‑1.18 | CM1.18‑2.36 | CM2.36‑4.75 | CM0.60‑4.75 |
---|---|---|---|---|
0.60-1.18 | 100.0 | 0 | 0 | 32.4 |
1.18-2.36 | 0 | 100.0 | 0 | 38.2 |
2.36-4.75 | 0 | 0 | 100.0 | 29.4 |
采用自密实混凝土作为NRPC基体,NRPC的配合比如
RCA | NFA | Cement | FA | SF | Water | Water reducing agent |
---|---|---|---|---|---|---|
806.0 | 824.0 | 404.0 | 90.0 | 60.0 | 189.0 | 5.5 |

图1 NRPC的制备过程
Fig.1 Preparation process of NRPC
采用
(1) |
式中:P为暴雨重现期,a;t为降雨时间,min.

图2 常水头透水系数测定仪
Fig.2 Constant water head permeability coefficient tester
透水系数试验之前先打开降雨喷头并放入堵塞物进行暴雨试验,然后进行透水系数试验.本试验中透水系数的测量采用的是常水头法,如
(2) |
式中:K为透水系数,mm/s,取3次试验的平均值;Q为t时刻的水流量,m
使用
小粒径和大粒径的堵塞物都可以造成NRPC透水系数降低,但对于不同孔径的NRPC,所形成的堵塞结构是不同的,这是因为NRPC的堵塞结构并不单一取决于孔径或堵塞物粒径,而是由孔径d和堵塞物粒径(r)共同决定.

图3 不同的单一截面堵塞结构
Fig.3 Different single cross‑section clogging structures
在暴雨冲刷下,单颗粒表面堵塞只发生在NRPC表面并无法进入孔道,因此只将单颗粒孔道堵塞和多颗粒孔道堵塞进行组合,来模拟NRPC孔道内的连续堵塞结构.

图4 连续堵塞结构
Fig.4 Continuous clogging structures
选用4种粒径范围的堵塞物对4种孔径的NRPC进行暴雨作用下的快速堵塞试验,得到NRPC透水系数的变化如

图5 NRPC透水系数的变化
Fig.5 Variation of permeability coefficient of NRPC

图6 引起透水系数降低的堵塞形式
Fig.6 Clogging form leading to reduction of permeability coefficient
由
CM2.36‑4.75对试件0.28‑1.2‑PC、0.28‑1.5‑PC和0.28‑2.0‑PC透水系数影响最小,与初始渗透系数相比,其透水系数分别降低了40.7%、40.6%和45.7%,这是因为其堵塞结构多为单颗粒表面堵塞;而试件0.28‑3.0‑PC的透水系数降低了58.2%,说明引起其透水系数降低的关键粒径为2.36~4.75 mm.其次,随着堵塞物粒径的增加,d/r不断降低,形成的堵塞结构多为Type A和Type C.CM0.60‑4.75对透水系数的降低幅度高于CM2.36‑4.75,这是因为其堵塞结构多为Type B和Type D,堵塞后CM0.60‑4.75中小粒径的堵塞物很难在水流和气流作用下继续向下移动,进而填充在空隙之间并引起透水系数降
堵塞深度对于PC清洗方式的选择具有重要意义,不适当的清洗方式可能会加大堵塞深度,例如高压冲洗孔道上部的堵塞会将堵塞物推入孔道更深

图7 总堵塞深度和透水系数衰减率的关系
Fig.7 Relationship between total clogging depth and permeability coefficient reduction rate

图8 NRPC每个孔道堵塞深度的变化
Fig.8 Variation of clogging depth of each pore channel in NRPC(size: mm)
d/r越高,在暴雨的冲刷下堵塞物越容易通过NRPC的孔道,尽管这暂时不会引起NRPC堵塞,但长期的积累会使堵塞物集中在NRPC底部,对NRPC的透水性能造成影响.对暴雨作用后堵塞物的通过率进行了研究,结果如
r/mm | 0.28‑1.2‑PC | 0.28‑1.5‑PC | 0.28‑2.0‑PC | 0.28‑3.0‑PC |
---|---|---|---|---|
0.60-1.18 | 3.9 | 5.3 | 8.3 | 18.1 |
1.18-2.36 | 0 | 2.6 | 6.7 | 11.6 |
2.36-4.75 | 0 | 0 | 0 | 6.7 |
0.60-4.75 | 1.1 | 1.2 | 3.6 | 7.1 |

图9 通过孔道的全集配堵塞物各粒径质量分数
Fig.9 Mass fraction of each particle size in fully integrated clogging materials through pore channels
(1)根据孔径和堵塞物粒径之比,堵塞结构可分为单颗粒表面堵塞、单颗粒孔道堵塞和多颗粒孔道堵塞.单颗粒孔道堵塞的稳定性远高于多颗粒孔道堵塞,多颗粒堵塞结构是最容易发生的堵塞结构.随着孔径和堵塞物粒径之比的增加,多颗粒堵塞结构稳定性不断降低.
(2)新型再生透水混凝土NRPC透水系数的降低主要发生在第1次暴雨堵塞循环中,单颗粒表面堵塞对透水系数影响较小,小粒径堵塞物形成的多颗粒孔道堵塞会导致透水系数迅速降低.在相同的孔隙率下,减小孔径会增加NRPC平均堵塞深度,透水系数衰减率随着总堵塞深度的增加而增加.
(3)随着孔径和堵塞物粒径之比的增加,堵塞物通过率不断增加,暴雨径流中的堵塞物更容易进入孔道,孔道的筛选作用不断降低.因此适当增加孔径和堵塞物粒径之比能够改善NRPC的抗堵塞性能.
参考文献
QI X T, ZHANG Z M. Assessing the urban road waterlogging risk to propose relative mitigation measures[J]. Science of the Total Environment, 2022, 849:157691. [百度学术]
张卫东, 董云, 彭宁波, 等. 冻融循环下透水再生混凝土力学性能损伤分析[J]. 建筑材料学报, 2020, 23(2):292‑296. [百度学术]
ZHANG Weidong, DONG Yun, PENG Ningbo, et al. Analysis on mechanical properties of pervious recycled concrete by damage under freeze‑thaw cycles[J]. Journal of Building Materials, 2020, 23(2):292‑296. (in Chinese) [百度学术]
汪超, 张同生, 谢晓庚, 等. 基于骨料球形度的透水混凝土配合比设计方法[J]. 建筑材料学报, 2022, 25(3):235‑241. [百度学术]
WANG Chao, ZHANG Tongsheng, XIE Xiaogeng, et al. Mix proportion design method of pervious concrete based on aggregate sphericity[J]. Journal of Building Materials, 2022, 25(3):235‑241. (in Chinese) [百度学术]
赵剑锋, 杨晓杰, 李好新, 等. 短切纤维对透水混凝土性能的影响[J]. 建筑材料学报, 2019, 22(2):266‑271. [百度学术]
ZHAO Jianfeng, YANG Xiaojie, LI Haoxin, et al. Effet of chopped fiber on the performance of pervious concrete[J]. Journal of Building Materials, 2019, 22(2):266‑271. (in Chinese) [百度学术]
WELKER A L, JENKINS J K G, MCCARTHY L, et al. Examination of the material found in the pore spaces of two permeable pavements[J]. Journal of Irrigation and Drainage Engineering, 2013, 139(4):278‑284. [百度学术]
YONG C F, MCCARTHY D T, DELETIC A. Predicting physical clogging of porous and permeable pavements[J]. Journal of Hydrology, 2013, 481:48‑55. [百度学术]
ELANGO K S, GOPI R, SARAVANAKUMAR R, et al. Properties of pervious concrete ‑ A state of the art review[J]. Materials Today:Proceedings, 2021, 45:2422‑2425. [百度学术]
KIA A, WONG H S, CHEESEMAN C R. High‑strength clogging resistant permeable pavement[J]. International Journal of Pavement Engineering, 2021, 22(3):271‑282. [百度学术]
KIA A, DELENS J M, WONG H S, et al. Structural and hydrological design of permeable concrete pavements[J]. Case Studies in Construction Materials, 2021, 15:e00564. [百度学术]
LI J S, ZHANG Y, LIU G L, et al. Preparation and performance evaluation of an innovative pervious concrete pavement[J]. Construction and Building Materials, 2017, 138:479‑485. [百度学术]
KIA A, WONG H S, CHEESEMAN C R. Defining clogging potential for permeable concrete[J]. Journal of Environmental Management, 2018, 220:44‑53. [百度学术]
CAI J W, CHEN J G, SHI J L, et al. A novel approach to evaluate the clogging resistance of pervious concrete[J]. Case Studies in Construction Materials, 2022, 16:e00864. [百度学术]
王宏畅, 周明刚. 多空隙沥青混合料排水及抗堵塞性能研究[J]. 建筑材料学报, 2016, 19(2):413‑416. [百度学术]
WANG Hongchang, ZHOU Minggang. Drain ability and anti‑clogging ability of porous asphalt mixture[J]. Journal of Building Materials, 2016, 19(2):413‑416. (in Chinese) [百度学术]
蒋玮, 沙爱民, 肖晶晶, 等. 多孔沥青混合料的空隙堵塞试验研究[J]. 建筑材料学报, 2013, 16(2):271‑275. [百度学术]
JIANG Wei, SHA Aimin, XIAO Jingjing, et al. Experimental study on the clogging of porous asphalt concrete[J]. Journal of Building Materials, 2013, 16(2):271‑275. (in Chinese) [百度学术]
ZHANG J, MENG B, WANG Z, et al. Numerical simulation on cleaning of clogged pervious concrete pavement[J]. Journal of Cleaner Production, 2022, 341:130878. [百度学术]
CUI X Z, ZHANG X N, WANG J P, et al. X‑ray CT based clogging analyses of pervious concrete pile by vibrating‑sinking tube method[J]. Construction and Building Materials, 2020, 262:120075. [百度学术]