摘要
为弥补传统泡沫沥青高温稳定性和黏附性的不足,解决传统橡胶沥青发泡效果不理想的缺陷,对terminal blend(TB)橡胶泡沫沥青进行了研究,探究了TB橡胶泡沫沥青发泡效果的影响规律,对其微观形貌与特征进行了表征,同时评估了TB橡胶泡沫沥青的高温性能、温度敏感性和黏度.结果表明:采用TB橡胶沥青制备泡沫沥青具备可行性;相比传统泡沫沥青,TB橡胶泡沫沥青在温度敏感性降低的同时,还显著提升了高温性能和黏度;微观结果显示TB橡胶泡沫沥青的发泡过程仅为物理过程,而且受发泡温度和发泡用水量的影响,其中后者对整体发泡效果的影响更加明显;TB橡胶泡沫沥青的最佳发泡温度为160 °C、发泡用水量为2.7%.
沥青路面再生技术是实现沥青路面废料再利用的有效途径,可避免环境污染,实现行业经济循环,促进生态环境保
由于橡胶沥青黏度偏高且存在橡胶颗粒,导致发泡困难.Yu
近年来,通过高温、高速剪切促进橡胶发生脱硫裂解反应,以改善相容性,从而使其具备优越储存稳定性和工作和易
本文首先采用TB橡胶沥青制备泡沫沥青,利用扫描电镜(SEM)和傅里叶红外光谱(FTIR)试验分析TB橡胶泡沫沥青的微观特征;然后建立以膨胀率(β)和半衰期(t)为主要指标,简化效能指数(ηSEI)为辅助指标的评价体系,并利用灰色关联法探究TB橡胶泡沫沥青发泡的关键影响因素,从而获得其最佳发泡条件;最后采用动态剪切流变仪(DSR)对其高温性能、温度敏感性和黏度等性能进行评价.
本试验用基质沥青为茂名石化公司产东海7
Type of asphalt binder | Penetration at 25 °C/ (0.1 mm) | Ductility at 15 °C/cm | Softening point/°C | Viscosity/(Pa·s) | |
---|---|---|---|---|---|
60 °C | 135 °C | ||||
Base asphalt binder | 67.0 | >100.0 | 48.0 | 231.0 | |
TB rubberized asphalt binder | 42.1 | 22.1 | 57.8 | 0.9 |
Density/(g·c | Sieve residue(by mass)/% | w(fiber)/% | w(carbon black)/% | w(rubber hydrocarbon)/% |
---|---|---|---|---|
0.298 | 7.1 | 0.1 | 30.0 | 59.0 |
本文通过定制的沥青改性装置制备TB橡胶沥青,采用WLB 10S型沥青发泡试验机进行发泡试验.TB橡胶泡沫沥青制备流程如

图1 TB橡胶泡沫沥青制备流程图
Fig.1 Flow chart for preparation of foamed TB rubberized asphalt binder
采用膨胀率(β)、半衰期(t)和简化效能指数(ηSEI)来评价沥青发泡效果.β为泡沫沥青最大体积与泡沫完全消失时的体积之比.t为泡沫沥青从最大膨胀体积衰减到1/2体积所对应的时间.ηSEI按照
(1) |
(2) |
式中:βi为初始膨胀率;βl为容许膨胀率;βmax为最大膨胀率;t1为衰减期,s;t2为膨胀期,s.
利用灰色关联分析法对沥青发泡性能的影响因素进行显著性分析,以确定影响泡沫沥青的关键因素,其中参考数列选取β、t和ηSEI这3个指标,比较数列代表各个影响因素.
选取发泡温度155、160、165、170 °C,发泡用水量1.5%、2.0%、2.5%、3.0%、3.5%、4.0%,在水压0.6 MPa和气压0.5 MPa条件下,利用WLB 10S型沥青发泡试验机分别对基质沥青和TB橡胶沥青进行发泡.每组试验对沥青的β、t和ηSEI进行3次平行试验,取其平均值,并确定最佳发泡条件.
采用美国FEI NOVA NANOSEM 230型场发射扫描电镜(SEM)分别对基质沥青、TB橡胶沥青和最佳发泡条件下的基质泡沫沥青、TB橡胶泡沫沥青进行SEM试验,以表征不同沥青的微观形貌.此外,采用Bruker Tensor 27傅里叶红外光谱仪(FTIR),对上述4种沥青进行红外扫描,测量波数范围为4 000~1 000 c
借助Anton Paar MCR102型动态剪切流变仪(DSR)分别对基质泡沫沥青和TB泡沫沥青的高温性能、温度敏感性和黏度进行评价.由于泡沫沥青中的水分残余会对其高温性能、黏度等产生一定影响,为确保试验结果更加明显,选用更具代表性的2%、3%、4%这3种发泡用水量进行探究.首先,在40~80 °C下,以5 °C为间隔对沥青进行温度扫描试验,获得不同温度下沥青的车辙因子(
发泡用水量是沥青发泡的关键因素之一,采用β、t和ηSEI探究发泡用水量对沥青发泡效果的影响,结果见

图2 不同发泡用水量下泡沫沥青发泡结果
Fig.2 Foaming results of foamed asphalt binders under different water consumptions
发泡温度是沥青发泡的另一关键因素,也采用β、t和ηSEI对其进行评价,结果见

图3 不同温度下泡沫沥青的发泡结果
Fig.3 Foaming results of foamed asphalt binders under different temperatures
基于发泡试验结果,利用灰色关联分析法对发泡用水量和发泡温度进行显著性分析,定量分析2种影响因素的重要性.根据发泡用水量(质量分数)和发泡温度的单因素结果可知,发泡用水量和发泡温度过高或过低均难以生产优质泡沫沥青.因此,在进行影响因素显著性分析时,将发泡温度选为155、160、165 °C,发泡用水量选为2.5%、3.0%、3.5%,灰色关联度的计算结果见
β | t | ηSEI | |||||
---|---|---|---|---|---|---|---|
Temperature | Water consumption | Temperature | Water consumption | Temperature | Water consumption | ||
0.614 6 | 0.657 8 | 0.717 5 | 0.608 4 | 0.502 7 | 0.540 4 |
沥青发泡结果显示,基质泡沫沥青和TB橡胶泡沫沥青的最佳发泡温度均为160 °C.另外,根据JTG/T 5521—2019《公路沥青路面再生技术规范》中最佳发泡条件的确定方法,得到最佳发泡用水量,结果如

图4 泡沫沥青最佳发泡用水量确定
Fig.4 Determination of optimum water consumption of foamed asphalt binders
通过SEM试验表征基质沥青、TB橡胶沥青和最佳发泡条件下基质泡沫沥青、TB橡胶泡沫沥青的微观形貌,如

图5 4种沥青的扫描电镜照片
Fig.5 SEM images of four kinds of asphalt binders

图6 4种沥青的FTIR图谱
Fig.6 FTI
将发泡用水量为2%、3%、4%,发泡温度为160 °C条件下的基质泡沫沥青、TB橡胶泡沫沥青,在室温(20 °C)下放置30 min,待泡沫沥青凝固后进行DSR试验;而基质沥青和TB橡胶沥青直接取样进行DSR试验.4种沥青均采用
4种沥青的车辙因子与温度关系如

图7 4种沥青的车辙因子与温度关系
Fig.7 Relationship between rutting factor and temperature of four kinds of asphalt binders
4种沥青采用与高温性能测试相同的处理方法进行DSR试验,基于测试结果绘制4种沥青的储能模量(G´)与温度(T)对数(log G´‑log T)关系曲线,结果见

图8 4种沥青的温度敏感性分析
Fig.8 Temperature sensitivity analysis of four kinds of asphalt binders
4种沥青采用与高温性能测试相同的处理方法进行温度扫描试验,基于测试结果绘制4种沥青的黏温曲线,如

图9 4种沥青的黏温曲线
Fig.9 Viscosity‑temperature curves of four kinds of asphalt binders
(1)TB橡胶泡沫沥青受发泡温度和发泡用水量的影响规律与基质泡沫沥青基本一致.灰色关联分析结果表明,发泡温度对沥青半衰期的影响程度更大,发泡用水量对沥青膨胀率和整体发泡效果的影响程度更显著.
(2)基质泡沫沥青和TB橡胶泡沫沥青的最佳发泡条件分别为发泡温度160 °C、发泡用水量2.9%和发泡温度160 °C、发泡用水量2.7%.
(3)与基质泡沫沥青相比,TB橡胶泡沫沥青在降低温度敏感性的同时,还可以提升高温性能和黏度.
参考文献
GUATIMOSIM F V, VASCONCELOS K L, BERNUCCI L L, et al. Laboratory and field evaluation of cold recycling mixture with foamed asphalt[J]. Road Materials and Pavement Design, 2018, 19(2):385‑399. [百度学术]
VIDAL R, MOLINER E, MARTÍNEZ G, et al. Life cycle assessment of hot mix asphalt and zeolite‑based warm mix asphalt with reclaimed asphalt pavement[J]. Resources, Conservation and Recycling, 2013, 74:101‑114. [百度学术]
ALMEIDA‑COSTA A, BENTA A. Economic and environmental impact study of warm mix asphalt compared to hot mix asphalt[J]. Journal of Cleaner Production, 2016, 112:2308‑2317. [百度学术]
HASAN M R M, YOU Z P, YANG X. A comprehensive review of theory, development, and implementation of warm mix asphalt using foaming techniques[J]. Construction and Building Materials, 2017, 152:115‑133. [百度学术]
LI Z G, HAO P W, LIU H Y, et al. Effect of cement on the strength and microcosmic characteristics of cold recycled mixtures using foamed asphalt[J]. Journal of Cleaner Production, 2019, 230:956‑965. [百度学术]
李秀君, 拾方治, 田原. 施工气温对泡沫沥青冷再生混合料性能的影响[J].建筑材料学报, 2013, 16(2):289‑293, 305. [百度学术]
LI Xiujun, SHI Fangzhi, TIAN Yuan. Effect of construction temperature on properties of cold recycling mixture with foamed bitumen [J]. Journal of Building Materials, 2013, 16(2):289‑293, 305. (in Chinese) [百度学术]
KAVUSSI A, HASHEMIAN L. Laboratory evaluation of moisture damage and rutting potential of WMA foam mixes[J]. International Journal of Pavement Engineering, 2012, 13(5):415‑423. [百度学术]
YU X, LENG Z, WANG Y, et al. Characterization of the effect of foaming water content on the performance of foamed crumb rubber modified asphalt[J]. Construction and Building Materials, 2014, 67:279‑284. [百度学术]
ZHANG S W, WANG D Y, GUO F, et al. Properties investigation of the SBS modified asphalt with a compound warm mix asphalt (WMA) fashion using the chemical additive and foaming procedure[J]. Journal of Cleaner Production, 2021, 319:128789. [百度学术]
李秀君, 高世柱, 赵麟昊, 等. 水性环氧树脂改性泡沫沥青冷再生混合料性能[J]. 建筑材料学报, 2021, 24(4):874‑880. [百度学术]
LI Xiujun, GAO Shizhu, ZHAO Linhao, et al. Performances of cold recycling mixture with foamed bitumen and waterborne epoxy resin [J]. Journal of Building Materials, 2021, 24(4):874‑880. (in Chinese) [百度学术]
温彦凯, 郭乃胜, 王淋, 等. 考虑胶浆黏附性的泡沫沥青冷再生混合料性能[J]. 建筑材料学报, 2020, 23(6):1504‑1511. [百度学术]
WEN Yankai, GUO Naisheng, WANG Lin, et al. Performance of cold recycled mixture with foamed asphalt considering adhesion of mastics [J]. Journal of Building Materials, 2020, 23(6):1504‑1511. (in Chinese) [百度学术]
HU J Y, MA T, YIN T, et al. Foamed warm mix asphalt mixture containing crumb rubber:Foaming optimization and performance evaluation[J]. Journal of Cleaner Production, 2022, 333:130085. [百度学术]
周艳,黄卫东,林鹏,等.溶解性胶粉改性沥青与SBS的交联反应研究[J].建筑材料学报,2018,21(1):54‑59. [百度学术]
ZHOU Yan, HUANG Weidong, LIN Peng, et al. Cross‑linking investigation of terminal blend rubberized asphalt with SBS [J]. Journal of Building Materials, 2018, 21(1):54‑59. (in Chinese) [百度学术]
WEN Y, LIU Q, CHEN L, et al. Review and comparison of methods to assess the storage stability of terminal blend rubberized asphalt binders[J]. Construction and Building Materials, 2020, 258:119586. [百度学术]
PRESTI D L. Recycled tyre rubber modified bitumens for road asphalt mixtures:A literature review[J]. Construction and Building Materials, 2013, 49:863‑881. [百度学术]
黄卫东,吕泉,柴冲冲.Terminal Blend胶粉改性沥青的复合改性研究[J].建筑材料学报,2016,19(1):111‑118. [百度学术]
HUANG Weidong, LÜ Quan, CHAI Chongchong. Research on composite modification by terminal blend asphalt [J]. Journal of Building Materials, 2016, 19(1):111‑118. (in Chinese) [百度学术]
LI B L, HUANG W D, TANG N P, et al. Evolution of components distribution and its effect on low temperature properties of terminal blend rubberized asphalt binder[J]. Construction and Building Materials, 2017, 136:598‑608. [百度学术]